bwconsistency/Recherche/ALDLoverAB/algo/index.tex
2025-05-19 16:50:06 +02:00

59 lines
3.6 KiB
TeX

We consider a set of processes communicating asynchronously over reliable point-to-point channels. Each process maintains the following local or shared variables:
\begin{itemize}
\item \textbf{\textit{received}}: the set of messages that have been received via the reliable broadcast primitive but not yet ordered.
\item \textbf{\textit{delivered}}: the set of messages that have been ordered.
\item \textbf{\textit{prop}[$r$][$j$]}: the proposal set announced by process $j$ at round $r$. It contains a set of messages that process $j$ claims to have received but not yet delivered.
\item \textbf{\textit{winner}$^r$}: the set of processes that have issued a valid \texttt{PROVE} for round $r$, as observed through the registry.
\item \textbf{\texttt{RB-cast}$(\texttt{PROP}, S, r, j)$}: a reliable broadcast invocation that disseminates the proposal $S$ from process $j$ for round $r$.
\item \textbf{\texttt{RB-delivered}$(\texttt{PROP}, S, r, j)$}: the handler invoked upon reception of a \texttt{RB-cast}, which stores the received proposal $S$ into $\textit{prop}[r][j]$.
\item \textbf{\texttt{READ}()} : returns the current view of all valid operations stored in the DenyList registry.
\item \textbf{\texttt{ordered}$(S)$}: returns a deterministic total order over a set $S$ of messages.
\end{itemize}
\resetalgline
\begin{algorithm}
\caption{Atomic Broadcast with DenyList}
\begin{algorithmic}[1]
\State $\textit{proves} \gets \emptyset$
\State $\textit{received} \gets \emptyset$
\State $\textit{delivered} \gets \emptyset$
\State $r_1 \gets 0$
\vspace{1em}
% --- AB-Broadcast ---
\State \nextalgline \textbf{AB-Broadcast}$_j(m)$
\State \nextalgline \hspace{1em} $\texttt{RB-Broadcast}_j(m)$
\vspace{1em}
% --- RB-delivered ---
\State \nextalgline \textbf{RB-delivered}$_j(m)$
\State \nextalgline \hspace{1em} $\textit{received} \gets \textit{received} \cup \{m\}$
\State \nextalgline \hspace{1em} \textbf{repeat until} $\textit{received} \setminus \textit{delivered} \neq \emptyset$
\State \nextalgline \hspace{2em} $S \gets \textit{received} \setminus \textit{delivered}$
\State \nextalgline \hspace{2em} $\textit{proves} \gets \texttt{READ}()$
\State \nextalgline \hspace{2em} $r_2 \gets \max\{r : j,\ (j, \texttt{PROVE}(r)) \in \textit{proves}\} + 1$
\State \nextalgline \hspace{2em} $\texttt{RB-cast}(\texttt{PROP}, S, r_2, j)$
\State \nextalgline \hspace{2em} $\texttt{PROVE}(r_2)$
\vspace{0.5em}
\State \nextalgline \hspace{2em} \textbf{for } $r \in [r_1 + 1, \dots, r_2]$ \textbf{do}
\State \nextalgline \hspace{3em} $\texttt{APPEND}(r)$
\State \nextalgline \hspace{3em} $\textit{proves} \gets \texttt{READ}()$
\State \nextalgline \hspace{3em} $\textit{winner}^r \gets \{j : (j, \texttt{PROVE}(r)) \in \textit{proves}\}$
\State \nextalgline \hspace{3em} \textbf{wait } $\forall j \in \textit{winner}^r,\ \textit{prop}[r][j] \neq \bot$
\State \nextalgline \hspace{3em} $T \gets \bigcup_{j \in \textit{winner}^r} \textit{prop}[r][j] \setminus \textit{delivered}$
\vspace{0.5em}
\State \nextalgline \hspace{3em} \textbf{for each } $m \in \texttt{ordered}(T)$
\State \nextalgline \hspace{4em} $\textit{delivered} \gets \textit{delivered} \cup \{m\}$
\State \nextalgline \hspace{4em} $\texttt{AB-deliver}_j(m)$
\State \nextalgline \hspace{2em} $r_1 \gets r_2$
\vspace{1em}
% --- RB-deliver(Prop) handler ---
\State \nextalgline \textbf{RB-delivered}$_j(\texttt{PROP}, S, r_1, j_1)$
\State \nextalgline \hspace{1em} $\textit{prop}[r_1][j_1] \gets S$
\end{algorithmic}
\end{algorithm}