We consider a set of processes communicating asynchronously over reliable point-to-point channels. Each process maintains the following local or shared variables: \begin{itemize} \item \textbf{\textit{received}}: the set of messages that have been received via the reliable broadcast primitive but not yet ordered. \item \textbf{\textit{delivered}}: the set of messages that have been ordered. \item \textbf{\textit{prop}[$r$][$j$]}: the proposal set announced by process $j$ at round $r$. It contains a set of messages that process $j$ claims to have received but not yet delivered. \item \textbf{\textit{winner}$^r$}: the set of processes that have issued a valid \texttt{PROVE} for round $r$, as observed through the registry. \item \textbf{\texttt{RB-cast}$(\texttt{PROP}, S, r, j)$}: a reliable broadcast invocation that disseminates the proposal $S$ from process $j$ for round $r$. \item \textbf{\texttt{RB-delivered}$(\texttt{PROP}, S, r, j)$}: the handler invoked upon reception of a \texttt{RB-cast}, which stores the received proposal $S$ into $\textit{prop}[r][j]$. \item \textbf{\texttt{READ}()} : returns the current view of all valid operations stored in the DenyList registry. \item \textbf{\texttt{ordered}$(S)$}: returns a deterministic total order over a set $S$ of messages. \end{itemize} \resetalgline \begin{algorithm} \caption{Atomic Broadcast with DenyList} \begin{algorithmic}[1] \State $\textit{proves} \gets \emptyset$ \State $\textit{received} \gets \emptyset$ \State $\textit{delivered} \gets \emptyset$ \State $r_1 \gets 0$ \vspace{1em} % --- AB-Broadcast --- \State \nextalgline \textbf{AB-Broadcast}$_j(m)$ \State \nextalgline \hspace{1em} $\texttt{RB-Broadcast}_j(m)$ \vspace{1em} % --- RB-delivered --- \State \nextalgline \textbf{RB-delivered}$_j(m)$ \State \nextalgline \hspace{1em} $\textit{received} \gets \textit{received} \cup \{m\}$ \State \nextalgline \hspace{1em} \textbf{repeat until} $\textit{received} \setminus \textit{delivered} \neq \emptyset$ \State \nextalgline \hspace{2em} $S \gets \textit{received} \setminus \textit{delivered}$ \State \nextalgline \hspace{2em} $\textit{proves} \gets \texttt{READ}()$ \State \nextalgline \hspace{2em} $r_2 \gets \max\{r : j,\ (j, \texttt{PROVE}(r)) \in \textit{proves}\} + 1$ \State \nextalgline \hspace{2em} $\texttt{RB-cast}(\texttt{PROP}, S, r_2, j)$ \State \nextalgline \hspace{2em} $\texttt{PROVE}(r_2)$ \vspace{0.5em} \State \nextalgline \hspace{2em} \textbf{for } $r \in [r_1 + 1, \dots, r_2]$ \textbf{do} \State \nextalgline \hspace{3em} $\texttt{APPEND}(r)$ \State \nextalgline \hspace{3em} $\textit{proves} \gets \texttt{READ}()$ \State \nextalgline \hspace{3em} $\textit{winner}^r \gets \{j : (j, \texttt{PROVE}(r)) \in \textit{proves}\}$ \State \nextalgline \hspace{3em} \textbf{wait } $\forall j \in \textit{winner}^r,\ \textit{prop}[r][j] \neq \bot$ \State \nextalgline \hspace{3em} $T \gets \bigcup_{j \in \textit{winner}^r} \textit{prop}[r][j] \setminus \textit{delivered}$ \vspace{0.5em} \State \nextalgline \hspace{3em} \textbf{for each } $m \in \texttt{ordered}(T)$ \State \nextalgline \hspace{4em} $\textit{delivered} \gets \textit{delivered} \cup \{m\}$ \State \nextalgline \hspace{4em} $\texttt{AB-deliver}_j(m)$ \State \nextalgline \hspace{2em} $r_1 \gets r_2$ \vspace{1em} % --- RB-deliver(Prop) handler --- \State \nextalgline \textbf{RB-delivered}$_j(\texttt{PROP}, S, r_1, j_1)$ \State \nextalgline \hspace{1em} $\textit{prop}[r_1][j_1] \gets S$ \end{algorithmic} \end{algorithm}