bwconsistency/recherches/ALDLoverAB/algo/index.tex
2025-04-30 07:07:35 +00:00

46 lines
1.2 KiB
TeX

We define $k$ as the id of the round \\
the $getMax(..)$ function able to return the highest round played in the system.
\begin{algorithm}[H]
\DontPrintSemicolon
\SetAlgoLined
\KwIn{le message $m$}
\BlankLine
\While{true}{
proves = READ() \\
k = getMax(dump) + 1 \\
APPEND(k || m) \\
\If{PROVE(k)}{
APPEND(k) \\
return
}
}
\caption{AB\_Broadcast}
\end{algorithm}
We define $k\_max$ as an intager \\
$getMax(..)$ function able to return the highest round played in the system. \\
% $proves_r$ as the sub set of proves with only the valid proves associated to the round r \\
$proves_r \subseteq proves$ s.a. $\forall PROVE(x) \in proves_r$, x is in the form $r || m$ with $m$ who cannot be empty \\
$proves_r^i$ is the $PROVE(r || m )$ operation submited by the process i if exist \\
\begin{algorithm}[H]
\DontPrintSemicolon
\SetAlgoLined
\BlankLine
\While{true}{
proves = READ() \\
k\_max = getMax(proves) \\
\For{r=k+1 \emph{\KwTo} k\_max}{
APPEND(r)\\
$proves_r$ = \{$\forall i, PROVE(r)_i \in READ()$\} \\
\For{i = 1 \emph{\KwTo} $|P|$}{
\If{$\exists PROVE(r)_i \in proves_r$}{
AB\_Recv($m$ s.t. $PROVE(r || m) \in proves$)
}
}
}
}
\caption{AB\_Listen}
\end{algorithm}