
? ? ?

JOLY Amaury
Encadrants : GODARD Emmanuel, TRAVERS Corentin

Aix-Marseille Université, Scille

2 mai 2025

1



1 Introduction

1.1 Model
1.1.1 Model Properties

The model is defined as Message-passing Aysnchronous.
There is n process. Each process is associated to a unique unforgeable id i.
Each process know the identity of all the process in the system
Each process have a reliable communication channel with all the others process such as :

— send(m) is the send primitive
— recv(m) is the reception primitive

A message send is eventualy received
The system is Crash-Prone. There is at most f process who can crash such as f < n.

1.1.2 AtomicBroadcast Properties

Property 1 AB_broadcast Validity if a message is sent by a correct process, the message is eventually
received by all the correct process.

Property 2 AB_receive Validity if a message is received by a correct process, the message is eventually
received by all the correct process.

Property 3 AB_receive safety No creation if a message is received by a correct process, the message was
emitted by a correct porcess.

Property 4 AB_receive safety No duplication each message is received at most 1 time by each process.

Property 5 AB_receive safety Ordering ∀m1,m2 two messages, ∀pi, pj two process.
if AB_recv(m1) and AB_recv(m2) for pi, pj
and AB_recv(m1) is before AB_recv(m2) for pi
so AB_recv(m1) is before AB_recv(m2) for pj

1.1.3 DenyList Properties

Property 6 APPEND Validity a APPEND(x) is valid iff the process p who sent the operation is such as
p ∈ ΠM . And iff x ∈ S where S is a set of valid values.

Property 7 PROVE Validity a PROVE(x) is valid iff the process p who sent the operation is such as
p ∈ ΠV . And iff ∃ APPEND(x) who appears before PROVE(x) in Seq.

Property 8 PROGRESS if an APPEND(x) is invoked, so there is a point in the linearization of the ope-
rations such as all PROVE(x) are valids.

Property 9 READ Validity READ() return a list of tuples who is a random permutation of all valids
PROVE() associated to the identity of the emiter process.

1.2 Algorithms
We define k as the id of the round

the getMax(proves) return MAX((_, r) : ∃(_, PROV E(r)) ∈ proves)
buffer a FIFO list with buffer[front] returning the first element

1



Algorithm 1: Upon RB_deliver(m)
1 rcved = rcved

⋃
{m}

2 upon RB_deliver(PROP, r, S) from j
3 prop[r][j] = S

Algorithm 2: AB_Broadcast
Input: le message m
Data: rcved = ∅
delivered = ∅
r = 0

1 RB_cast(m)
2 rcved = rcvd

⋃
{m}

3 while true do
4 r = r + 1
5 RB_cast(PROP, r, S)
6 PROVE(r)
7 APPEND(r)
8 proves = READ()
9 winnerr = {j : (j, PROV E(r)) ∈ proves}

10 wait until (∀j ∈ winnerk : prop[r][j])

11 if ∃j ∈ winnerk : m ∈ prop[r][j] then
12 break
13 end
14 end

Algorithm 3: AB_Listen
1 r_prev = 0
2 while true do
3 proves = READ()
4 r_max = MAX({r : ∃i, (i, PROV E(r)) ∈ proves})
5 for r = r_prev + 1tor_max do
6 APPEND(r)
7 proves = READ()
8 winnerk = {j : (j, PROV E(r)) ∈ proves}
9 wait until(∀j ∈ winnerk : prop[r][j] ̸= ∅)

10 Mr = (
⋃

j∈winnerk prop[r][j]) \ delivered
/* we assume Mr as an ordered list s.a. ∀m1,m2, ifm1 < m2, m1 appears

before m2 in Mr */

11 foreach m ∈ Mr do
12 delivered = delivered

⋃
{m}

13 AB_deliver(m)
14 end
15 end
16 end

2


