???

JOLY Amaury Encadrants : GODARD Emmanuel, TRAVERS Corentin

Aix-Marseille Université, Scille

 $2~\mathrm{mai}~2025$

1 Introduction

1.1 Model

1.1.1 Model Properties

The model is defined as Message-passing Aysnchronous.

There is n process. Each process is associated to a unique unforgeable id i.

Each process know the identity of all the process in the system

Each process have a reliable communication channel with all the others process such as :

- send(m) is the send primitive
- recv(m) is the reception primitive
- A message send is eventually received

The system is Crash-Prone. There is at most f process who can crash such as $\mathbf{f} < \mathbf{n}$.

1.1.2 AtomicBroadcast Properties

Property 1 AB_broadcast Validity if a message is sent by a correct process, the message is eventually received by all the correct process.

Property 2 AB_receive Validity if a message is received by a correct process, the message is eventually received by all the correct process.

Property 3 AB_receive safety No creation if a message is received by a correct process, the message was emitted by a correct porcess.

Property 4 AB receive safety No duplication each message is received at most 1 time by each process.

Property 5 $AB_receive safety Ordering \forall m_1, m_2 two messages, <math>\forall p_i, p_j two process.$ if $AB_recv(m1)$ and $AB_recv(m2)$ for p_i, p_j and $AB_recv(m1)$ is before $AB_recv(m2)$ for p_i so $AB_recv(m1)$ is before $AB_recv(m2)$ for p_j

1.1.3 DenyList Properties

Property 6 APPEND Validity a APPEND(x) is valid iff the process p who sent the operation is such as $p \in \Pi_M$. And iff $x \in S$ where S is a set of valid values.

Property 7 *PROVE* Validity a *PROVE*(x) is valid iff the process p who sent the operation is such as $p \in \Pi_V$. And iff \exists *APPEND*(x) who appears before *PROVE*(x) in Seq.

Property 8 *PROGRESS if an* APPEND(x) *is invoked, so there is a point in the linearization of the operations such as all* PROVE(x) *are valids.*

Property 9 READ Validity READ() return a list of tuples who is a random permutation of all valids PROVE() associated to the identity of the emiter process.

1.2 Algorithms

We define k as the id of the round the getMax(proves) return $MAX((_, r) : \exists(_, PROVE(r)) \in proves)$ buffer a FIFO list with buffer[front] returning the first element

Algorithm 1: Upon RB_deliver(m)

1 rcved = rcved ∪{m}
 2 upon RB_deliver(PROP, r, S) from j
 3 prop[r][j] = S

Algorithm 2: AB_Broadcast

Input: le message m**Data:** reved = \emptyset delivered = \emptyset $\mathbf{r} = \mathbf{0}$ $1 \text{ RB}_{cast}(m)$ 2 $rcved = rcvd \bigcup \{m\}$ 3 while true do r = r + 14 $RB \ cast(PROP, r, S)$ 5 PROVE(r) 6 APPEND(r) 7 proves = READ()8 $winner^r = \{j : (j, PROVE(r)) \in proves\}$ 9 wait until $(\forall j \in winner^k : prop[r][j])$ $\mathbf{10}$ if $\exists j \in winner^k : m \in prop[r][j]$ then 11 $\mathbf{12}$ break end 13 14 end

Algorithm 3: AB Listen

```
1 \text{ r_prev} = \overline{0}
 2 while true do
        proves = READ()
 3
        r max = MAX(\{r : \exists i, (i, PROVE(r)) \in proves\})
 \mathbf{4}
        for r = r_prev + 1tor_max do
 5
            APPEND(r)
 6
 7
            proves = READ()
            winner^{k} = \{j : (j, PROVE(r)) \in proves\}
 8
            \textbf{wait until}(\forall j \in winner^k: prop[r][j] \neq \emptyset)
 9
            M^r = (\bigcup_{j \in winner^k} prop[r][j]) \setminus delivered
\mathbf{10}
                       /* we assume M^r as an ordered list s.a. \forall m_1, m_2, ifm_1 < m_2, m_1 appears
             before m_2 in M^r */
            for
each m \in M^r do
\mathbf{11}
                delivered = delivered \bigcup \{m\}
\mathbf{12}
                AB deliver(m)
13
            end
14
        \mathbf{end}
15
16 end
```