
? ? ?

JOLY Amaury
Encadrants : GODARD Emmanuel, TRAVERS Corentin

Aix-Marseille Université, Scille

15 mai 2025

1

1 Introduction

1.1 Model
1.1.1 Model Properties

The system consists of n asynchronous processes communicating via reliable point-to-point message pas-
sing.
Each process has a unique, unforgeable identifier and knows the identifiers of all other processes.
Up to f < n processes may crash (fail-stop).
The network is reliable : if a correct process sends a message to another correct process, it is eventually
delivered.
Messages are uniquely identifiable : two messages sent by distinct processes or at different rounds are distin-
guishable
2 messages sent by the same processus in two differents rounds are differents

Property 1 (Message Uniqueness) If two messages are sent by different processes, or by the same pro-
cess in different rounds, then the messages are distinct.
Formally :

∀p1, p2, ∀r1, r2, ∀m1,m2,

(
send(p1, r1,m1) ∧ send(p2, r2,m2)
∧ (p1 ̸= p2 ∨ r1 ̸= r2)

)
⇒ m1 ̸= m2

1.1.2 Reliable Broadcast Properties

Property 2 Integrity Every message received was previously sent.
Formally :
∀pi : bc-recvi(m)⇒ ∃pj : bc-sendj(m)

Property 3 No Duplicates No message is received more than once at any single processor.
Formally :
∀m, ∀pi : bc-recvi(m) occurs at most once

Property 4 Validity All messages broadcast by a correct process are eventually received by all non faulty
processors.
Formally :
∀m, ∀pi : correct(pi) ∧ bc-sendi(m) => ∀pj : correct(pj)⇒ bc-recvj(m)

1.1.3 AtomicBroadcast Properties

Property 5 AB Totally ordered ∀m1,m2, ∀pi, pj : ab-recvpi
(m1) < ab-recvpi

(m2) ⇒ ab-recvpj
(m1) <

ab-recvpj (m2)

1.1.4 DenyList Properties

Let ΠM be the set of processes authorized to issue APPEND operations, and ΠV the set of processes
authorized to issue PROVE operations.
Let S be the set of valid values that may be appended. Let Seq be the linearization of operations recorded
in the DenyList.

Property 6 APPEND Validity An operation APPEND(x) is valid iff : the issuing process p ∈ ΠM , and the
value x ∈ S

1

Property 7 PROVE Validity An operation PROVE(x) is valid iff : the issuing process p ∈ ΠV , and there
exists no APPEND(x) that appears earlier in Seq.

Property 8 PROGRESS If an APPEND(x) is invoked by a correct process, then all correct processes will
eventually be unable to PROVE(x).

Property 9 READ Validity READ() return a list of tuples who is a random permutation of all valids
PROVE() associated to the identity of the emiter process.

1.2 Algorithms
We consider a set of processes communicating asynchronously over reliable point-to-point channels. Each

process maintains the following shared variables :
— received : the set of messages received (but not yet delivered).
— delivered : the set of messages that have been received, ordered, and delivered.
— prop[r][j] : the proposal set of process j at round r. It contains the set of messages that process

j claims to have received but not yet delivered at round r, concatenated with its newly broadcast
message.

— proves : the current content of the DenyList registry, accessible via the operation READ(). It returns
a list of tuples (j, PROVE(r)), each indicating that process j has issued a valid PROVE for round r.

— winnerr : the set of processes that have issued a valid PROVE operation for round r.
— RB-cast : a reliable broadcast primitive that satisfies the properties defined in Section 1.1.2.
— APPEND(r), PROVE(r) : operations that respectively insert (APPEND) and attest (PROVE) the

participation of a process in round r in the DenyList registry.
— READ() : retrieves the current local view of valid operations (APPENDs and PROVEs) from the

DenyList.
— ordered(S) : returns a deterministic total order over a set S of messages (e.g., via hash or lexicographic

order).

1.3 proof
Theorem 1 (Integrity) If a message m is delivered by any process, then it was previously broadcast by
some process via the AB-broadcast primitive.

Proof 1 Let j be a process such that AB-deliverj(m) occurs.

AB-deliverj(m) (line 24)
⇒ ∃r0 : m ∈ ordered(Mr0) (line 22)
⇒ ∃j0 : j0 ∈ winnerr0 ∧m ∈ prop[r0][j0] (line 21)
⇒ ∃m0, S0 : RB-receivedj0(m0, S0, r0, j0) ∧m ∈ S0 (line 2)
⇒ S0 = (receivedj0 \ deliveredj0) ∪ {m1} (line 5)
⇒ if m1 = m : ∃AB-broadcastj0(m) □

else if m1 ̸= m :

m ∈ receivedj0 \ deliveredj0 ⇒ m ∈ receivedj0 ∧m /∈ deliveredj0
∃j1, S1, r1 : RB-receivedj1(m,S1, r1, j1) (line 1)
⇒ ∃AB-broadcastj1(m) □ (line 5)

Theorem 2 (No Duplication) No message is delivered more than once by any process.

2

RB-received(m,S, r0, j0)

1 received← received ∪ {m}
2 prop[r0][j0]← S

AB-broadcast(m, j0)

3 proves← READ()
4 r0 ← max{r : ∃j, (j, PROVE(r)) ∈ proves}+ 1
5 RB-cast(m, (received \ delivered) ∪ {m}, r0, j0)
6 PROVE(r0)
7 APPEND(r0)
8 repeat
8 proves← READ()
9 r1 ← max{r : ∃j, (j, PROVE(r)) ∈ proves} − 1

10 winnerr1 ← {j : (j, PROVE(r1)) ∈ proves}
11 wait ∀j ∈ winnerr1 , prop[r1][j] ̸= ⊥
12 until ∀r2, ∃j2 ∈ winnerr2 , m ∈ prop[r2][j2]

AB-listen
14 while true do
14 proves← READ()
15 r1 ← max{r : ∃j, (j, PROVE(r)) ∈ proves} − 1
16 for r2 ∈ [r0, . . . , r1] do
17 APPEND(r2)
18 proves← READ()
19 winnerr2 ← {j : (i, PROVE(r2)) ∈ proves}
20 wait ∀j ∈ winnerr2 , prop[r2][j] ̸= ⊥
21 Mr2 ←

⋃
j∈winnerr2 prop[r2][j]

22 for all m ∈ ordered(Mr2) do
23 delivered← delivered ∪ {m}
24 AB-deliver(m)

3

Proof 2 Let j be a process such that both AB-deliverj(m0) and AB-deliverj(m1) occur, with m0 = m1.

AB-deliverj(m0) ∧AB-deliverj(m1) (line 24)
⇒ m0,m1 ∈ deliveredj (line 23)
⇒ ∃r0, r1 : m0 ∈Mr0 ∧m1 ∈Mr1 (line 22)
⇒ ∃j0, j1 : m0 ∈ prop[r0][j0] ∧m1 ∈ prop[r1][j1]

∧ j0 ∈ winnerr0 , j1 ∈ winnerr1 (line 21)

We now distinguish two cases :

Case 1 : r0 = r1 :
— If j0 ̸= j1 : this contradicts message uniqueness, since two different processes would include the same

message in round r0.
— If j0 = j1 :

⇒|(j0, PROVE(r0)) ∈ proves| ≥ 2 (line 19)
⇒PROVEj0(r0) occurs 2 times (line 6)
⇒AB-Broadcastj0(m0) were invoked two times
⇒(max{r : ∃j, (j, PROVE(r)) ∈ proves}+ 1) (line 4)

returned the same value in two differents invokations of AB-Broadcast
But PROVE(r0)⇒ max{r : ∃j, (j, PROVE(r)) ∈ proves}+ 1 > r0

It’s impossible for a single process to submit two messages in the same round

Case 2 : r0 ̸= r1 :
— If j0 ̸= j1 : again, message uniqueness prohibits two different processes from broadcasting the same

message in different rounds.
— If j0 = j1 : message uniqueness also prohibits the same process from broadcasting the same message

in two different rounds.
In all cases, we reach a contradiction. Therefore, it is impossible for a process to deliver the same message

more than once. □

1.3.1 Broadcast Validity

∃j0,m0 AB_broadcastj0(m0)⇒ ∀j1 AB_receivedj1(m0)

4

Proof :

∃j0,m0 AB_broadcastj0(m0)

∀j1, ∃r1 RB_deliverr1j1 (m0)

∃receieved : m0 ∈ receievedj1

∃r0 : RB_deliver(PROP, r0,m0) LOOP

∃prop : prop[r0][j0] = m0

if ̸ ∃(j0, PROV E(r0)) ∈ proves
r0+ = 1

jump to LOOP
else
∃winner,winnerr0 ∋ j0

∃Mr0 ∋ (prop[r0][j0] = m0)

∀j1, AB_deliverj1(m0)

AB receive width

∃j0,m0 AB_deliverj0(m0)⇒ ∀j1 AB_deliverj1

Proof :

∀j0,m0 AB_deliverj0(m0)⇒ ∃j1 correct , AB_broadcast(m0)

∃j0,m0 AB_broadcastj0(m0)⇒ ∀j1, AB_deliverj1(m0)

5

