
1 Introduction

1.1 Model
1.1.1 Model Properties

The system consists of n asynchronous processes communicating via reliable point-to-point message pas-
sing.
Each process has a unique, unforgeable identifier and knows the identifiers of all other processes.
Up to f < n processes may crash (fail-stop).
The network is reliable : if a correct process sends a message to another correct process, it is eventually
delivered.
Messages are uniquely identifiable : two messages sent by distinct processes or at different rounds are distin-
guishable
2 messages sent by the same processus in two differents rounds are differents

Property 1 (Message Uniqueness) If two messages are sent by different processes, or by the same pro-
cess in different rounds, then the messages are distinct.
Formally :

∀p1, p2, ∀r1, r2, ∀m1,m2,

(
send(p1, r1,m1) ∧ send(p2, r2,m2)
∧ (p1 ̸= p2 ∨ r1 ̸= r2)

)
⇒ m1 ̸= m2

1.1.2 Reliable Broadcast Properties

Property 2 Integrity Every message received was previously sent.
Formally :
∀pi : bc-recvi(m)⇒ ∃pj : bc-sendj(m)

Property 3 No Duplicates No message is received more than once at any single processor.
Formally :
∀m, ∀pi : bc-recvi(m) occurs at most once

Property 4 Validity All messages broadcast by a correct process are eventually received by all non faulty
processors.
Formally :
∀m, ∀pi : correct(pi) ∧ bc-sendi(m) => ∀pj : correct(pj)⇒ bc-recvj(m)

1.1.3 AtomicBroadcast Properties

Property 5 AB Totally ordered ∀m1,m2, ∀pi, pj : ab-recvpi
(m1) < ab-recvpi

(m2) ⇒ ab-recvpj
(m1) <

ab-recvpj (m2)

1.1.4 DenyList Properties

Let ΠM be the set of processes authorized to issue APPEND operations, and ΠV the set of processes
authorized to issue PROVE operations.
Let S be the set of valid values that may be appended. Let Seq be the linearization of operations recorded
in the DenyList.

Property 6 APPEND Validity An operation APPEND(x) is valid iff : the issuing process p ∈ ΠM , and the
value x ∈ S

1

Property 7 PROVE Validity An operation PROVE(x) is valid iff : the issuing process p ∈ ΠV , and there
exists no APPEND(x) that appears earlier in Seq.

Property 8 PROGRESS If an APPEND(x) is invoked by a correct process, then all correct processes will
eventually be unable to PROVE(x).

Property 9 READ Validity READ() return a list of tuples who is a random permutation of all valids
PROVE() associated to the identity of the emiter process.

1.2 Algorithms
We consider a set of processes communicating asynchronously over reliable point-to-point channels. Each

process maintains the following local or shared variables :
— received : the set of messages that have been received via the reliable broadcast primitive but not

yet ordered.
— delivered : the set of messages that have been ordered.
— prop[r][j] : the proposal set announced by process j at round r. It contains a set of messages that

process j claims to have received but not yet delivered.
— winnerr : the set of processes that have issued a valid PROVE for round r, as observed through the

registry.
— window : the list of the ids from the f + 1 last rounds. window.pop() remove the first value of the

array. window.push(x) append x as the last value of the array.
— RB-cast(PROP, S, r, j) : a reliable broadcast invocation that disseminates the proposal S from process

j for round r.
— RB-delivered(PROP, S, r, j) : the handler invoked upon reception of a RB-cast, which stores the

received proposal S into prop[r][j].
— READ() : returns the current view of all valid operations stored in the DenyList registry.
— ordered(S) : returns a deterministic total order over a set S of messages.
— hash(T, r) : returns the identifier of the next round as a deterministic function of the delivered set T

and current round r.

1.3 Round mecansism
We assume that the hash function is deterministic and without collisions. Because we’re sure that the

round contains at least f + 1 processes as winners, the next round ID is unpredictable by a process who would
not follow the protocol and would drop messages legally sent by non-byzantine process. Also, it ensures that
if a byzantine process try to go faster than the others, he will at least wait the faster non-byzantine process
to progress.

1.4 proof
Theorem 1 (Integrity) If a message m is delivered by any process, then it was previously broadcast by
some process via the AB-broadcast primitive.

Proof 1

Theorem 2 (No Duplication) No message is delivered more than once by any process.

Proof 2

Theorem 3 (Validity) If a correct process invokes AB-Broadcastj(m), then all correct processes eventually
deliver m.

Proof 3

2

Algorithm 1 Atomic Broadcast with DenyList
1 proves← ∅
1 received← ∅
1 delivered← ∅
1 window← [⊥]f+1

1 r1 ← 0

1 AB-Broadcastj(m)
2 RB-Broadcastj(m)

3 RB-deliveredj(m)
4 received← received ∪ {m}
5 repeat while received \ delivered ̸= ∅
6 S ← received \ delivered
7 RB-broadcast(PROP, S, r1, j)
8 proves← READ()
9 PROVE[j](r1)

10 APPEND[j](r1)
11 S ← {1, ..., n}
12 repeat while |S| ≤ n− f
13 forall i ∈ S
14 if ¬PROVE[i](r1)
15 S ← S \ i
16 winner[r1]← READ_ALL()
17 wait ∀j ∈ winner[r1], |prop[r1][j] ̸= ⊥| ≥ f + 1
18 T ←

⋃
j∈winner[r1] prop[r1][j] \ delivered

19 for each m ∈ ordered(T)
20 delivered← delivered ∪ {m}
21 AB-deliverj(m)
22 r1 ← hash(T, r1)

23 READ_ALL(r)
24 for each j ∈ (1, ..., n)
25 win[j]← {j1 : READj1() ∋ (j, PROVE(r))}
26 for i ∈ (1, ..., n)
27 for j ∈ (1, ..., n)
28 if i ∈ win[j]
29 count[i] + +
30 return {i : count[i] ≥ n− f}

3

Theorem 4 (Total Order) If two correct processes deliver two messages m1 and m2, then they deliver
them in the same order.

Proof 4

4

