1 Introduction

1.1 Model
1.1.1 Model Properties

The system consists of n asynchronous processes communicating via reliable point-to-point message pas-
sing.
Each process has a unique, unforgeable identifier and knows the identifiers of all other processes.
Up to f < n processes may crash (fail-stop).
The network is reliable : if a correct process sends a message to another correct process, it is eventually
delivered.
Messages are uniquely identifiable : two messages sent by distinct processes or at different rounds are distin-
guishable
2 messages sent by the same processus in two differents rounds are differents

Property 1 (Message Uniqueness) If two messages are sent by different processes, or by the same pro-
cess in different rounds, then the messages are distinct.
Formally :

send(p1,71, m1) A send(pa, T2, m2)

A (p1#p2V 1 #12))Z>m17ém2

vp17p27 v’l"l,’l"g, vm17m27 (

1.1.2 Reliable Broadcast Properties

Property 2 Integrity Every message received was previously sent.
Formally :
Vp; © be-recv;(m) = p; : be-send;(m)

Property 3 No Duplicates No message is received more than once at any single processor.
Formally :
Vm, Vp; = be-recv;(m) occurs at most once

Property 4 Validity All messages broadcast by a correct process are eventually received by all non faulty
PToCessors.

Formally :

Vm,Vp; : correct(p;) A be-send;(m) => Vp; : correct(p;) = be-recvj(m)

1.1.3 AtomicBroadcast Properties

Property 5 AB Totally ordered Vmy,ma,Vp;,pj : ab-recvy,(m1) < ab-recvy,,(m2) = ab-recv,;(my) <
ab-recuy, (m2)

1.1.4 DenyList Properties

Let II,; be the set of processes authorized to issue APPEND operations, and IIy the set of processes
authorized to issue PROVE operations.
Let S be the set of valid values that may be appended. Let Seq be the linearization of operations recorded
in the DenyList.

Property 6 APPEND Validity An operation APPEND(x) is valid iff : the issuing process p € I, and the
value x € S

Property 7 PROVE Validity An operation PROVE(x) is valid iff : the issuing process p € Iy, and there
exists no APPEND(x) that appears earlier in Seq.

Property 8 PROGRESS If an APPEND(x) is invoked by a correct process, then all correct processes will
eventually be unable to PROVE(x).

Property 9 READ Validity READ() return a list of tuples who is a random permutation of all valids
PROVE() associated to the identity of the emiter process.

1.2 Algorithms

We consider a set of processes communicating asynchronously over reliable point-to-point channels. Each
process maintains the following local or shared variables :

— received : the set of messages that have been received via the reliable broadcast primitive but not
yet ordered.

— delivered : the set of messages that have been ordered.

— prop|r][j] : the proposal set announced by process j at round r. It contains a set of messages that
process j claims to have received but not yet delivered.

— winner” : the set of processes that have issued a valid PROVE for round r, as observed through the
registry.

— window : the list of the ids from the f + 1 last rounds. window.pop() remove the first value of the
array. window.push(z) append x as the last value of the array.

— RB-cast(PROP, S, r, j) : a reliable broadcast invocation that disseminates the proposal S from process
j for round r.

— RB-delivered(PROP,S,r,j) : the handler invoked upon reception of a RB-cast, which stores the
received proposal S into prop[r|[j].

— READ() : returns the current view of all valid operations stored in the DenyList registry.

— ordered(S) : returns a deterministic total order over a set S of messages.

— hash(T,r) : returns the identifier of the next round as a deterministic function of the delivered set T'
and current round r.

1.3 Round mecansism

We assume that the hash function is deterministic and without collisions. Because we’re sure that the
round contains at least f + 1 processes as winners, the next round ID is unpredictable by a process who would
not follow the protocol and would drop messages legally sent by non-byzantine process. Also, it ensures that
if a byzantine process try to go faster than the others, he will at least wait the faster non-byzantine process
to progress.

1.4 proof

Theorem 1 (Integrity) If a message m is delivered by any process, then it was previously broadcast by
some process via the AB-broadcast primitive.

Proof 1
Theorem 2 (No Duplication) No message is delivered more than once by any process.
Proof 2

Theorem 3 (Validity) If a correct process invokes AB-Broadcast;(m), then all correct processes eventually
deliver m.

Proof 3

Algorithm 1 Atomic Broadcast with DenyList

1

I

N =

0O U Ww

19
20
21
22

23
24
25
26
27
28
29
30

proves < ()
received < ()
delivered < ()
window < [L]F+1
r1 0

AB-Broadcast;(m)
RB-Broadcast;(m)

RB-delivered,;(m)
received < received U {m}
repeat while received \ delivered # ()
S < received \ delivered
RB-broadcast(PROP, S, 71, j)
proves < READ()
PROVE[j] (1)

APPEND[](r1)
S« {1,..,n}
repeat while |S| <n — f
foralli e S
if ~PROVE[](r1)
S+ S\i

winner{ry] < READ_ALL()
wait Vj € winner[ri], |prop[ri|[j] # L| > f+1
T < Ujewinneriry) Proplri]lj] \ delivered

for each m € ordered(T)
delivered <+ delivered U {m}
AB-deliver;(m)

r1 < hash(T,r1)

READ _ALL(r)
for each je (1,...,n)
win[j] < {j1 : READ;, () > (j, PROVE(r))}
forie (1,...,n)
for j e (1,...,n)
if i € winlj]
countli] + +
return {i : count[i] > n — f}

Theorem 4 (Total Order) If two correct processes deliver two messages mi and ms, then they deliver
them in the same order.

Proof 4

