We define $k$ as the id of the round \\ the $getMax(..)$ function able to return the highest round played in the system. \begin{algorithm}[H] \DontPrintSemicolon \SetAlgoLined \KwIn{le message $m$} \BlankLine \While{true}{ proves = READ() \\ k = getMax(dump) + 1 \\ APPEND(k || m) \\ \If{PROVE(k)}{ APPEND(k) \\ return } } \caption{AB\_Broadcast} \end{algorithm} We define $k\_max$ as an intager \\ $getMax(..)$ function able to return the highest round played in the system. \\ % $proves_r$ as the sub set of proves with only the valid proves associated to the round r \\ $proves_r \subseteq proves$ s.a. $\forall PROVE(x) \in proves_r$, x is in the form $r || m$ with $m$ who cannot be empty \\ $proves_r^i$ is the $PROVE(r || m )$ operation submited by the process i if exist \\ \begin{algorithm}[H] \DontPrintSemicolon \SetAlgoLined \BlankLine \While{true}{ proves = READ() \\ k\_max = getMax(proves) \\ \For{r=k+1 \emph{\KwTo} k\_max}{ APPEND(r)\\ $proves_r$ = \{$\forall i, PROVE(r)_i \in READ()$\} \\ \For{i = 1 \emph{\KwTo} $|P|$}{ \If{$\exists PROVE(r)_i \in proves_r$}{ AB\_Recv($m$ s.t. $PROVE(r || m) \in proves$) } } } } \caption{AB\_Listen} \end{algorithm}