encore pas bon

This commit is contained in:
Amaury JOLY
2025-06-27 07:53:09 +00:00
parent b5719a7d6b
commit 35a9d91779
3 changed files with 110 additions and 90 deletions

View File

@ -5,19 +5,22 @@ We consider a set of processes communicating asynchronously over reliable point-
\item \textbf{\textit{delivered}}: the set of messages that have been ordered.
\item \textbf{\textit{prop}[$r$][$j$]}: the proposal set announced by process $j$ at round $r$. It contains a set of messages that process $j$ claims to have received but not yet delivered.
\item \textbf{\textit{winner}$^r$}: the set of processes that have issued a valid \texttt{PROVE} for round $r$, as observed through the registry.
\item \textbf{\textit{window}}: the list of the ids from the $f+1$ last rounds. \textit{window.pop()} remove the first value of the array. \textit{window.push(x)} append x as the last value of the array.
\item \textbf{\texttt{RB-cast}$(\texttt{PROP}, S, r, j)$}: a reliable broadcast invocation that disseminates the proposal $S$ from process $j$ for round $r$.
\item \textbf{\texttt{RB-delivered}$(\texttt{PROP}, S, r, j)$}: the handler invoked upon reception of a \texttt{RB-cast}, which stores the received proposal $S$ into $\textit{prop}[r][j]$.
\item \textbf{\texttt{READ}()} : returns the current view of all valid operations stored in the DenyList registry.
\item \textbf{\texttt{ordered}$(S)$}: returns a deterministic total order over a set $S$ of messages.
\item \textbf{\texttt{hash}$(T, r)$}: returns the identifier of the next round as a deterministic function of the delivered set $T$ and current round $r$.
\end{itemize}
\resetalgline
\begin{algorithm}
\caption{Atomic Broadcast with DenyList}
\begin{algorithmic}[1]
\begin{algorithmic}[1]
\State $\textit{proves} \gets \emptyset$
\State $\textit{received} \gets \emptyset$
\State $\textit{delivered} \gets \emptyset$
\State $\textit{window} \gets [\bot]^{f+1}$
\State $r_1 \gets 0$
\vspace{1em}
@ -29,31 +32,47 @@ We consider a set of processes communicating asynchronously over reliable point-
% --- RB-delivered ---
\State \nextalgline \textbf{RB-delivered}$_j(m)$
\State \nextalgline \hspace{1em} $\textit{received} \gets \textit{received} \cup \{m\}$
\State \nextalgline \hspace{1em} \textbf{repeat until} $\textit{received} \setminus \textit{delivered} \neq \emptyset$
\State \nextalgline \hspace{1em} \textbf{repeat while} $\textit{received} \setminus \textit{delivered} \neq \emptyset$
\State \nextalgline \hspace{2em} $S \gets \textit{received} \setminus \textit{delivered}$
\State \nextalgline \hspace{2em} $\texttt{RB-broadcast}(\texttt{PROP}, S, r_1, j)$
\State \nextalgline \hspace{2em} $\textit{proves} \gets \texttt{READ}()$
\State \nextalgline \hspace{2em} $r_2 \gets \max\{r : j,\ (j, \texttt{PROVE}(r)) \in \textit{proves}\} + 1$
\State \nextalgline \hspace{2em} $\texttt{RB-cast}(\texttt{PROP}, S, r_2, j)$
\State \nextalgline \hspace{2em} $\texttt{PROVE}(r_2)$
\State \nextalgline \hspace{2em} $\texttt{PROVE}[j](r_1)$
% \State \nextalgline \hspace{2em} $r_1 \gets \max\{r : j,\ (j, \texttt{PROVE}(r)) \in \textit{proves}\} + 1$
\vspace{0.5em}
\State \nextalgline \hspace{2em} $\texttt{APPEND}[j](r_1)$
\State \nextalgline \hspace{2em} $S \gets \{1, ..., n\}$
\State \nextalgline \hspace{2em} \textbf{repeat while} $|S| \leq n - f$
\State \nextalgline \hspace{3em} \textbf{forall} $i \in S$
\State \nextalgline \hspace{4em} \textbf{if} $\neg \texttt{PROVE}[i](r_1)$
\State \nextalgline \hspace{5em} $S \gets S \setminus i$
\vspace{0.5em}
\State \nextalgline \hspace{2em} \textbf{for } $r \in [r_1 + 1, \dots, r_2]$ \textbf{do}
\State \nextalgline \hspace{3em} $\texttt{APPEND}(r)$
\State \nextalgline \hspace{3em} $\textit{proves} \gets \texttt{READ}()$
\State \nextalgline \hspace{3em} $\textit{winner}^r \gets \{j : (j, \texttt{PROVE}(r)) \in \textit{proves}\}$
\State \nextalgline \hspace{3em} \textbf{wait } $\forall j \in \textit{winner}^r,\ \textit{prop}[r][j] \neq \bot$
\State \nextalgline \hspace{3em} $T \gets \bigcup_{j \in \textit{winner}^r} \textit{prop}[r][j] \setminus \textit{delivered}$
\State \nextalgline \hspace{2em} $\textit{winner}[r_1] \gets \texttt{READ\_ALL}()$
\State \nextalgline \hspace{2em} \textbf{wait } $\forall j \in \textit{winner}[r_1],\ |\textit{prop}[r_1][j] \neq \bot| \geq f+1$
\State \nextalgline \hspace{2em} $T \gets \bigcup_{j \in \textit{winner}[r_1]} \textit{prop}[r_1][j] \setminus \textit{delivered}$
\vspace{0.5em}
\State \nextalgline \hspace{3em} \textbf{for each } $m \in \texttt{ordered}(T)$
\State \nextalgline \hspace{4em} $\textit{delivered} \gets \textit{delivered} \cup \{m\}$
\State \nextalgline \hspace{4em} $\texttt{AB-deliver}_j(m)$
\State \nextalgline \hspace{2em} $r_1 \gets r_2$
\State \nextalgline \hspace{2em} \textbf{for each } $m \in \texttt{ordered}(T)$
\State \nextalgline \hspace{3em} $\textit{delivered} \gets \textit{delivered} \cup \{m\}$
\State \nextalgline \hspace{3em} $\texttt{AB-deliver}_j(m)$
\State \nextalgline \hspace{2em} $r_1 \gets \textit{hash}(T, r_1)$
\vspace{1em}
% --- RB-deliver(Prop) handler ---
\State \nextalgline \textbf{RB-delivered}$_j(\texttt{PROP}, S, r_1, j_1)$
\State \nextalgline \hspace{1em} $\textit{prop}[r_1][j_1] \gets S$
% --- READ_ALL() ---
\State \nextalgline \textbf{READ\_ALL}$(r)$
\State \nextalgline \hspace{1em} \textbf{for each } $j \in (1, ... , n)$
\State \nextalgline \hspace{2em} $win[j] \gets \{j_1: \texttt{READ}_{j_1}() \ni (j, \texttt{PROVE}(r))\}$
\State \nextalgline \hspace{1em} \textbf{for} $i \in (1, ... , n)$
\State \nextalgline \hspace{2em} \textbf{for} $j \in (1, ... , n)$
\State \nextalgline \hspace{3em} \textbf{if} $i \in win[j]$
\State \nextalgline \hspace{4em} $count[i] ++$
\State \nextalgline \hspace{1em} \textbf{return} $\{i: count[i] \geq n-f\}$
\end{algorithmic}
\end{algorithm}
\end{algorithmic}
\end{algorithm}
\subsection{Round mecansism}
We assume that the hash function is deterministic and without collisions. Because we're sure that the round contains at least f + 1 processes as winners, the next round ID is unpredictable by a process who would not follow the protocol and would drop messages legally sent by non-byzantine process.
Also, it ensures that if a byzantine process try to go faster than the others, he will at least wait the faster non-byzantine process to progress.

Binary file not shown.

View File

@ -4,53 +4,54 @@
\begin{proof}
Let $j$ be a process such that $\texttt{AB-deliver}_j(m)$ occurs.
% Let $j$ be a process such that $\texttt{AB-deliver}_j(m)$ occurs.
\begin{align*}
&\texttt{AB-deliver}_j(m) & \text{(line 18)} \\
\Rightarrow\; & m \in \texttt{ordered}(T),\ \text{with } T = \bigcup_{j' \in \textit{winner}^r} \textit{prop}[r][j'] \setminus \textit{delivered} & \text{(lines 16-17)} \\
\Rightarrow\; & \exists j_0,\ r_0 : m \in \textit{prop}[r_0][j_0] & \text{(line 16)} \\
\Rightarrow\; & \textit{prop}[r_0][j_0] = S,\ \text{with } \texttt{RB-delivered}_{j}(PROP, S, r_0, j_0) & \text{(line 22)} \\
\Rightarrow\; & S \text{ was sent in } \texttt{RB-cast}(PROP, S, r_0, j_0) & \text{(line 9)} \\
\Rightarrow\; & S = \textit{received}_{j_0} \setminus \textit{delivered}_{j_0} & \text{(line 6)} \\
\Rightarrow\; & m' \in \textit{received}_{j_0}\ \text{where } m' \text{ broadcast by } j_0 & \text{(line 4)} \\
\Rightarrow\; & \textbf{if } m = m' \\
& \quad \Rightarrow \texttt{RB-Broadcast}_{j_0}(m) \text{ occurred} & \text{(line 3)} \\
& \quad \Rightarrow \texttt{AB-Broadcast}_{j_0}(m) \text{ occurred} & \text{(line 1)} & \hspace{1em} \square \\
& \textbf{else: } m \in \textit{received}_{j_0} \setminus \textit{delivered}_{j_0} \\
& \quad \Rightarrow m \in \textit{received}_{j_0} & \text{(line 4)} \\
& \quad \Rightarrow \texttt{RB-delivered}_{j_0}(m) \text{ occurred} & \text{(line 3)} \\
& \quad \Rightarrow \exists j_1 : \texttt{RB-Broadcast}_{j_1}(m) \text{ occurred} & \text{(line 2)} \\
& \quad \Rightarrow \texttt{AB-Broadcast}_{j_1}(m) \text{ occurred} & \text{(line 1)} & \hspace{1em} \square
\end{align*}
% \begin{align*}
% &\texttt{AB-deliver}_j(m) & \text{(line 18)} \\
% \Rightarrow\; & m \in \texttt{ordered}(T),\ \text{with } T = \bigcup_{j' \in \textit{winner}^r} \textit{prop}[r][j'] \setminus \textit{delivered} & \text{(lines 16-17)} \\
% \Rightarrow\; & \exists j_0,\ r_0 : m \in \textit{prop}[r_0][j_0] & \text{(line 16)} \\
% \Rightarrow\; & \textit{prop}[r_0][j_0] = S,\ \text{with } \texttt{RB-delivered}_{j}(PROP, S, r_0, j_0) & \text{(line 22)} \\
% \Rightarrow\; & S \text{ was sent in } \texttt{RB-cast}(PROP, S, r_0, j_0) & \text{(line 9)} \\
% \Rightarrow\; & S = \textit{received}_{j_0} \setminus \textit{delivered}_{j_0} & \text{(line 6)} \\
% \Rightarrow\; & m' \in \textit{received}_{j_0}\ \text{where } m' \text{ broadcast by } j_0 & \text{(line 4)} \\
% \Rightarrow\; & \textbf{if } m = m' \\
% & \quad \Rightarrow \texttt{RB-Broadcast}_{j_0}(m) \text{ occurred} & \text{(line 3)} \\
% & \quad \Rightarrow \texttt{AB-Broadcast}_{j_0}(m) \text{ occurred} & \text{(line 1)} & \hspace{1em} \square \\
% & \textbf{else: } m \in \textit{received}_{j_0} \setminus \textit{delivered}_{j_0} \\
% & \quad \Rightarrow m \in \textit{received}_{j_0} & \text{(line 4)} \\
% & \quad \Rightarrow \texttt{RB-delivered}_{j_0}(m) \text{ occurred} & \text{(line 3)} \\
% & \quad \Rightarrow \exists j_1 : \texttt{RB-Broadcast}_{j_1}(m) \text{ occurred} & \text{(line 2)} \\
% & \quad \Rightarrow \texttt{AB-Broadcast}_{j_1}(m) \text{ occurred} & \text{(line 1)} & \hspace{1em} \square
% \end{align*}
Therefore, every delivered message $m$ must originate from some call to \texttt{AB-Broadcast}.
% Therefore, every delivered message $m$ must originate from some call to \texttt{AB-Broadcast}.
\end{proof}
\begin{theorem}[No Duplication]
No message is delivered more than once by any process.
\end{theorem}
\begin{proof}
Assume by contradiction that a process $j$ delivers the same message $m$ more than once, i.e.,
\[
\texttt{AB-deliver}_j(m) \text{ occurs at least twice.}
\]
% Assume by contradiction that a process $j$ delivers the same message $m$ more than once, i.e.,
% \[
% \texttt{AB-deliver}_j(m) \text{ occurs at least twice.}
% \]
\begin{align*}
&\texttt{AB-deliver}_j(m) \text{ occurs} & \text{(line 19)} \\
\Rightarrow\; & m \in \texttt{ordered}(T),\ \text{where } T = \bigcup_{j' \in \textit{winner}^r} \textit{prop}[r][j'] \setminus \textit{delivered} & \text{(lines 16-17)} \\
\Rightarrow\; & m \notin \textit{delivered} \text{ at that time} \\
\\
\text{However:} \\
& \texttt{delivered} \gets \texttt{delivered} \cup \{m\} & \text{(line 18)} \\
\Rightarrow\; & m \in \textit{delivered} \text{ permanently} \\
\Rightarrow\; & \text{In any future round, } m \notin T' \text{ since } T' = \bigcup_{j' \in \textit{winner}^r} \textit{prop}[r'][j'] \setminus \textit{delivered} \\
\Rightarrow\; & m \text{ will not be delivered again} \\
\Rightarrow\; & \text{Contradiction.}
\end{align*}
% \begin{align*}
% &\texttt{AB-deliver}_j(m) \text{ occurs} & \text{(line 19)} \\
% \Rightarrow\; & m \in \texttt{ordered}(T),\ \text{where } T = \bigcup_{j' \in \textit{winner}^r} \textit{prop}[r][j'] \setminus \textit{delivered} & \text{(lines 16-17)} \\
% \Rightarrow\; & m \notin \textit{delivered} \text{ at that time} \\
% \\
% \text{However:} \\
% & \texttt{delivered} \gets \texttt{delivered} \cup \{m\} & \text{(line 18)} \\
% \Rightarrow\; & m \in \textit{delivered} \text{ permanently} \\
% \Rightarrow\; & \text{In any future round, } m \notin T' \text{ since } T' = \bigcup_{j' \in \textit{winner}^r} \textit{prop}[r'][j'] \setminus \textit{delivered} \\
% \Rightarrow\; & m \text{ will not be delivered again} \\
% \Rightarrow\; & \text{Contradiction.}
% \end{align*}
Therefore, no message can be delivered more than once by the same process. $\square$
% Therefore, no message can be delivered more than once by the same process. $\square$
\end{proof}
\begin{theorem}[Validity]
@ -58,27 +59,27 @@
\end{theorem}
\begin{proof}
Let $j$ be a correct process such that $\texttt{AB-Broadcast}_j(m)$ occurs (line 5).
% Let $j$ be a correct process such that $\texttt{AB-Broadcast}_j(m)$ occurs (line 5).
\begin{align*}
&\texttt{AB-Broadcast}_j(m) & \text{(line 1)}\\
\Rightarrow\; & \texttt{RB-Broadcast}_j(m) \text{ occurs} & \text{(line 2)} \\
\Rightarrow\; & \forall j_0 : \texttt{RB-delivered}_{j_0}(m) & \text{(line 3)} \\
\Rightarrow\; & m \in \textit{received}_{j_0} & \text{(line 4)} \\
\Rightarrow\; & \textbf{if } m \in \texttt{delivered}_{j_0} \\
& \quad \Rightarrow \textit{delivered}_{j_0} \gets textit{delivered}_{j_0} \cup \{m\} & \text{(line 18)} \\
& \quad \Rightarrow \texttt{AB-delivered}_{j_0}(m) & \text{(line 19)} & \hspace{1em} \square \\
& \textbf{else } m \notin \textit{delivered}_{j_0} : \\
& \quad \Rightarrow m \in S_{j_0}\ \text{since } S_{j_0} = \textit{receieved}_{j_0} \setminus \textit{delivered}_{j_0} & \text{(line 6)} \\
& \quad \Rightarrow \exists r : \texttt{RB-cast}_{j_0}(texttt{PROP}, S_{j_0}, r, j_0) & \text{(line 9)} \\
& \quad \quad \Rightarrow \forall j_1 : \texttt{RB-Deliver}_{j_1}(\texttt{PROP}, S_{j_0}, r, j_0)\ \text{occurs} & \text{(line 21)} \\
& \quad \quad \Rightarrow \textit{prop}[r][j_0] = S_{j_0} & \text{(line 22)} \\
& \quad \Rightarrow \exists j_2 \in j_0 : \texttt{PROVE}_{j_2}(r)\ \text{is valid} & \text{(line 10)} \\
& \quad \Rightarrow j_2 \in textit{winner}^r & \text{(line 14)} \\
& \quad \Rightarrow T_{j_0} \ni \textit{prop}[r][j_2] \setminus \textit{delivered}_{j_0} & \text{(line 16)} \\
& \quad \Rightarrow T_{j_0} \ni S_{j_2} \setminus \textit{delivered}_{j_0} \ni m & \text{(line 16)} \\
& \quad \Rightarrow \texttt{AB-deliver}_{j_0}(m) & \text{(line 19)} & \hspace{1em} \square \\
\end{align*}
% \begin{align*}
% &\texttt{AB-Broadcast}_j(m) & \text{(line 1)}\\
% \Rightarrow\; & \texttt{RB-Broadcast}_j(m) \text{ occurs} & \text{(line 2)} \\
% \Rightarrow\; & \forall j_0 : \texttt{RB-delivered}_{j_0}(m) & \text{(line 3)} \\
% \Rightarrow\; & m \in \textit{received}_{j_0} & \text{(line 4)} \\
% \Rightarrow\; & \textbf{if } m \in \texttt{delivered}_{j_0} \\
% & \quad \Rightarrow \textit{delivered}_{j_0} \gets textit{delivered}_{j_0} \cup \{m\} & \text{(line 18)} \\
% & \quad \Rightarrow \texttt{AB-delivered}_{j_0}(m) & \text{(line 19)} & \hspace{1em} \square \\
% & \textbf{else } m \notin \textit{delivered}_{j_0} : \\
% & \quad \Rightarrow m \in S_{j_0}\ \text{since } S_{j_0} = \textit{receieved}_{j_0} \setminus \textit{delivered}_{j_0} & \text{(line 6)} \\
% & \quad \Rightarrow \exists r : \texttt{RB-cast}_{j_0}(texttt{PROP}, S_{j_0}, r, j_0) & \text{(line 9)} \\
% & \quad \quad \Rightarrow \forall j_1 : \texttt{RB-Deliver}_{j_1}(\texttt{PROP}, S_{j_0}, r, j_0)\ \text{occurs} & \text{(line 21)} \\
% & \quad \quad \Rightarrow \textit{prop}[r][j_0] = S_{j_0} & \text{(line 22)} \\
% & \quad \Rightarrow \exists j_2 \in j_0 : \texttt{PROVE}_{j_2}(r)\ \text{is valid} & \text{(line 10)} \\
% & \quad \Rightarrow j_2 \in textit{winner}^r & \text{(line 14)} \\
% & \quad \Rightarrow T_{j_0} \ni \textit{prop}[r][j_2] \setminus \textit{delivered}_{j_0} & \text{(line 16)} \\
% & \quad \Rightarrow T_{j_0} \ni S_{j_2} \setminus \textit{delivered}_{j_0} \ni m & \text{(line 16)} \\
% & \quad \Rightarrow \texttt{AB-deliver}_{j_0}(m) & \text{(line 19)} & \hspace{1em} \square \\
% \end{align*}
\end{proof}
@ -88,20 +89,20 @@
\begin{proof}
\begin{align*}
& \forall j_0 : \texttt{AB-Deliver}_{j_0}(m_0) \wedge \texttt{AB-Deliver}_{j_0}(m_1) & \text{(line 19)} \\
\Rightarrow\; & \exists r_0, r_1 : m_0 \in \texttt{ordered}(T^{r_0}) \wedge m_1 \in \texttt{ordered}(T^{r_1}) & \text{(line 17)} \\
\Rightarrow\; & T^{r_0} = \bigcup_{j' \in \textit{winner}^{r_0}} \textit{prop}[r_0][j'] \setminus \textit{delivered}\ \wedge \\
& T^{r_1} = \bigcup_{j' \in \textit{winner}^{r_1}} \textit{prop}[r_1][j'] \setminus \textit{delivered} & \text{(line 16)} \\
\Rightarrow\; & \textbf{if } r_0 = r_1 \\
& \quad \Rightarrow T^{r_0} = T^{r_1} \\
& \quad \Rightarrow m_0, m_1 \in \texttt{ordered}(T^{r_0})\ \text{since \texttt{ordered} is deterministic} \\
& \quad \Rightarrow \textbf{if } m_0 < m_1 : \\
& \quad \quad \Rightarrow \texttt{AB-Deliver}_{j_0}(m_0) < \texttt{AB-Deliver}_{j_0}(m_1) & & \hspace{1em} \square\\
& \textbf{else if } r_0 < r_1 \\
& \quad \Rightarrow \forall m \in T^{r_0}, \forall m' \in T^{r_1} : \texttt{AB-Deliver}(m) < \texttt{AB-Deliver}(m') & & \hspace{1em} \square\\
\end{align*}
% \begin{align*}
% & \forall j_0 : \texttt{AB-Deliver}_{j_0}(m_0) \wedge \texttt{AB-Deliver}_{j_0}(m_1) & \text{(line 19)} \\
% \Rightarrow\; & \exists r_0, r_1 : m_0 \in \texttt{ordered}(T^{r_0}) \wedge m_1 \in \texttt{ordered}(T^{r_1}) & \text{(line 17)} \\
% \Rightarrow\; & T^{r_0} = \bigcup_{j' \in \textit{winner}^{r_0}} \textit{prop}[r_0][j'] \setminus \textit{delivered}\ \wedge \\
% & T^{r_1} = \bigcup_{j' \in \textit{winner}^{r_1}} \textit{prop}[r_1][j'] \setminus \textit{delivered} & \text{(line 16)} \\
% \Rightarrow\; & \textbf{if } r_0 = r_1 \\
% & \quad \Rightarrow T^{r_0} = T^{r_1} \\
% & \quad \Rightarrow m_0, m_1 \in \texttt{ordered}(T^{r_0})\ \text{since \texttt{ordered} is deterministic} \\
% & \quad \Rightarrow \textbf{if } m_0 < m_1 : \\
% & \quad \quad \Rightarrow \texttt{AB-Deliver}_{j_0}(m_0) < \texttt{AB-Deliver}_{j_0}(m_1) & & \hspace{1em} \square\\
% & \textbf{else if } r_0 < r_1 \\
% & \quad \Rightarrow \forall m \in T^{r_0}, \forall m' \in T^{r_1} : \texttt{AB-Deliver}(m) < \texttt{AB-Deliver}(m') & & \hspace{1em} \square\\
% \end{align*}
Therefore, for all correct processes, messages are delivered in the same total order.
% Therefore, for all correct processes, messages are delivered in the same total order.
\end{proof}