rajout de notes + debut beamer

This commit is contained in:
amaury
2023-05-07 16:02:45 +02:00
parent 5fd2cd1273
commit 0e3463f97d
11 changed files with 702 additions and 2 deletions

View File

@ -0,0 +1,52 @@
\documentclass{beamer}
\usetheme{Boadilla}
\usecolortheme{orchid}
\usepackage[T1]{fontenc}
\usepackage[utf8]{inputenc}
\usepackage[french]{babel}
\usepackage{stackengine}
\addtobeamertemplate{navigation symbols}{}{%
\usebeamerfont{footline}%
\usebeamercolor[fg]{footline}%
\hspace{1em}%
\insertframenumber/\inserttotalframenumber
}
\usepackage{ulem}
\usepackage{tkz-tab}
\setbeamertemplate{blocks}[rounded]%
[shadow=true]
\AtBeginSection{%
\begin{frame}
\tableofcontents[sections=\value{section}]
\end{frame}
}
\usepackage{tikz}
\usetikzlibrary{positioning}
\usetikzlibrary{calc}
\usetikzlibrary{arrows.meta}
\title[bwconsistency]{Consistence faible byzantine appliquée au cloud}
\subtitle{Présentation intermédiaire: Consistence faible}
\author[JOLY Amaury]{JOLY Amaury\\ \textbf{Encadrants :} G, LABOUREL Arnaud }
% \\[2ex] \includegraphics[scale=0.1]{./img/amu.png}
\institute[LIS, Scille]{LIS-LAB, Scille}
\date{\today}
\begin{document}
\maketitle
\begin{frame}{Table des matières}
\tableofcontents
\end{frame}
% \section{Introduction}
% \input{introduction/index.tex}
\section{Les propriétés de la Consistence faibes}
\input{wconsitence_properties/index.tex}
\end{document}

View File

@ -10,4 +10,18 @@
3. Introduire le concept de cohérence faible
- exemple: application distribuée décentralisé
4. Définir les propriétés d'un système réparti
5. (?) Présenter les concepts de modélisations (histoires concurrentes)
5. Definir les differents modèles de cohérence faible (des plus trivial aux moins)
1. Cohérence Séquentielle (SC)
2. Linéarisibilité -> Serialisabilité
3. Convergence/Convergence Forte
1. Définit le concepts de convergence
2. Pourquoi ? + les apports de la convergence forte
3. Types de données basés sur la convergence (poruquoi ?)
4. Cohérence Pipeline
1. On présente la notion d'Intention
2. On l'oppose à la cohérence Pipeline
6. Cohérence d'écriure
1. Ce que ne couvre pas les modèles précedents
2. Cohérence d'écriture et cohérence d'écriure forte.

View File

@ -0,0 +1,41 @@
\resizebox{\columnwidth}{!}{
\begin{tikzpicture}[
roundnode/.style={circle, draw=black, fill=black, very thick, minimum size=1pt,},
ignorednode/.style={circle, draw=black!20, fill=black!20, very thick, minimum size=1pt,},
arrow/.style={|->, thick,},
message/.style={->, blue!50, dashed, -{Circle[length=4pt,]}},
]
\node[roundnode] (11) {};
\node[left] at (11.west) {$p_0$};
\node[above] at (11.north) {$w(1)$};
\node[roundnode] (12) [right=of 11] {};
\node[above] at (12.north) {$I(a)$};
\node[roundnode] (13) [right=of 12] {};
\node[above] at (13.north) {$r/(0,1)$};
\node[roundnode] (14) [right=35pt of 13] {};
\node[above] at (14.north) {$r/(1,2)^w$};
\draw[arrow] (11) -- (12);
\draw[arrow] (12) -- (13);
\draw[arrow] (13) -- (14);
\node[roundnode] (21) [below=of 11] {};
\node[left] at (21.west) {$p_1$};
\node[below] at (21.south) {$w(2)$};
\node[roundnode] (22) [right=of 21] {};
\node[below] at (22.south) {$R/\emptyset$};
\node[roundnode] (23) [right=of 22] {};
\node[below] at (23.south) {$r/(0,2)$};
\node[roundnode] (24) [right=35pt of 23] {};
\node[below] at (24.south) {$r/(1,2)^w$};
\draw[arrow] (21) -- (22);
\draw[arrow] (22) -- (23);
\draw[arrow] (23) -- (24);
\draw (24) -- (14);
\draw[dashed] ($(14)!0.5!(13) + (0,1)$) -- ++(0, -3.5);
\end{tikzpicture}
}

View File

@ -0,0 +1,144 @@
\begin{frame}
\frametitle{Linéarisation}
% \begin{itemize}
% \end{itemize}
\end{frame}
\begin{frame}
\frametitle{Sureté}
\begin{block}{Définition}
Toute lécture réalisé dans un même environement non-concurrent est identique.
\end{block}
\begin{figure}
\include{wconsitence_properties/linearisation_surete_hc}
\end{figure}
\end{frame}
\begin{frame}
\frametitle{Régularité}
\begin{block}{Définition}
Une lécture concurrente à une écriture peut lire soit la valeur avant l'écriture, soit la valeur après l'écriture.
\end{block}
\begin{figure}
\include{wconsitence_properties/linearisation_regularite_hc}
\end{figure}
\end{frame}
\begin{frame}
\frametitle{Atomicité}
\begin{block}{Définition}
Une lécture concurrente à une écriture peut lire soit la valeur avant l'écriture, soit la valeur après l'écriture.
\end{block}
\begin{figure}
\include{wconsitence_properties/linearisation_atomicite_hc}
\end{figure}
\end{frame}
\begin{frame}
\frametitle{Convergence (EC)}
\begin{columns}
\column{0.4\textwidth}
\include{wconsitence_properties/convergence_hc}%
\column{0.5\textwidth}
Il existe un ensemble cofini d'évenements dont chacun peut être justifier par la même linéarisation. \\
\begin{math}
\begin{array}{ll}
e.g.: & E' = \{r/(1,2)^w, r/(1,2)^w\} \\
& w(1) \bullet w(2) \bullet \textcolor{red}{r/(1,2)^w} \\
\end{array}
\end{math}
\end{columns}
\begin{flushright}
\begin{math}
EC = \left\{
\begin{array}{l}
\mathcal{T} \rightarrow \mathcal{P}(\mathcal{H}) \\
T \rightarrow \left\{
\begin{array}{lll}
H \in \mathcal{H}: & \multicolumn{2}{l}{|U_{T,H}| = \infty} \\
& \lor & \exists E' \subset E_H, |E_H \setminus E'| < \infty \\
& & \land \displaystyle\bigcap_{e \in E'} \delta_T^{-1}(\lambda(e)) \neq \emptyset \\
\end{array}
\right. \\
\end{array}
\right.
\end{math}
\end{flushright}
\end{frame}
\begin{frame}
\frametitle{Validité (V)}
\begin{columns}
\column{0.4\textwidth}
\include{wconsitence_properties/validite_hc}
\column{0.6\textwidth}
Il existe, un ensemble cofini d'évenement tels que pour chacun d'entre eux une linéarisations de toutes les opérations d'écriture les justifient. \\
\begin{math}
\begin{array}{ll}
e.g.: & E' = \{r/(2,1)^w, r/(1,2)^w\} \\
& w(2) \bullet w(1) \bullet \textcolor{red}{r/(2,1)^w} \\
& w(1) \bullet w(2) \bullet \textcolor{red}{r/(1,2)^w} \\
\end{array}
\end{math}
\end{columns}
\begin{flushright}
\begin{math}
V = \left\{
\begin{array}{l}
\mathcal{T} \rightarrow \mathcal{P}(\mathcal{H}) \\
T \rightarrow \left\{
\begin{array}{lll}
H \in \mathcal{H}: & \multicolumn{2}{l}{|U_{T,H}| = \infty} \\
& \lor & \exists E' \subset E_H, (|E_H \setminus E'| < \infty \\
& & \land \forall e \in E', lin(H[E_H / {e}]) \cap L(T) \neq \emptyset) \\
\end{array}
\right. \\
\end{array}
\right.
\end{math}
\end{flushright}
\end{frame}
\begin{frame}
\frametitle{Localité d'état (LS)}
\begin{columns}
\column{0.4\textwidth}
\include{wconsitence_properties/localiteetat_hc}
\column{0.6\textwidth}
Pour tout processus $p$, il existe une linéarisation contenant toutes les lectures pures de $p$ rendant l'histoire cohérente. \\
\begin{math}
\begin{array}{ll}
e.g.: & \textcolor{blue}{C_{p_1} = \{r/(0,0), r/(0,2)^w, w(2)\}}, \\
& \textcolor{red}{C_{p_2} = \{r/(0,0), r/(0,1)^w, w(1)\}}, \\
& \textcolor{blue}{r/(0,0) \bullet w(2) \bullet r/(0,2)^w} \\
& \textcolor{red}{r/(0,0) \bullet w(1) \bullet r/(0,1)^w} \\
\end{array}
\end{math}
\end{columns}
\begin{flushright}
\begin{math}
LS = \left\{
\begin{array}{l}
\mathcal{T} \rightarrow \mathcal{P}(\mathcal{H}) \\
T \rightarrow \left\{
\begin{tabular}{lll}
$H \in \mathcal{H}:$ & \multicolumn{2}{l}{$\forall p \in \mathcal{P}_H, \exists C_p \subset E_H,$} \\
& & $\hat{Q}_{T,H} \subset C_p$ \\
& $\land$ & $lin(H[p \cap C_p / C_p]) \cap L(T) \neq \emptyset$ \\
\end{tabular}
\right. \\
\end{array}
\right.
\end{math}
\end{flushright}
\end{frame}

View File

@ -0,0 +1,31 @@
\resizebox{\columnwidth}{!}{%
\begin{tikzpicture}[
roundedrectangle/.style={draw, rounded corners, rectangle, minimum height=10pt, minimum width=20pt},
invisible/.style={draw=none, fill=none},
]
\node[invisible] (10) {};
\node[roundedrectangle] (11) [right=60pt of 10] {\textcolor{blue}{$r_x(0,0)$}};
\node[roundedrectangle, minimum width=100pt] (12) [right=50pt of 11] {$w_x(1)$};
\node[invisible] (13) [right=100pt of 12] {};
\node[invisible] (20) [below=15pt of 10] {};
\node[roundedrectangle] (21) [right=20pt of 20] {\textcolor{blue}{$r_x/(0,0)$}};
\node[roundedrectangle] (22) [right=50pt of 21] {\textcolor{red}{$r_x/(0,1)$}};
\node[roundedrectangle] (23) [right=15pt of 22] {\textcolor{red}{$r_x/(0,1)$}};
\node[roundedrectangle] (24) [right=10pt of 23] {\textcolor{red}{$r_x/(0,1)$}};
\node[roundedrectangle] (25) [right=20pt of 24] {\textcolor{red}{$r_x/(0,1)$}};
\node[invisible] (26) [below=15pt of 13] {};
\node[invisible] (30) [below=15pt of 20] {};
\node[roundedrectangle] (31) [right=30pt of 30] {\textcolor{blue}{$r_x/(0,0)$}};
\node[roundedrectangle] (32) [right=55pt of 31] {\textcolor{blue}{$r_x/(0,0)$}};
\node[roundedrectangle] (33) [right=15pt of 32] {\textcolor{red}{$r_x/(0,1)$}};
\node[roundedrectangle] (34) [right=25pt of 33] {\textcolor{red}{$r_x/(0,1)$}};
\node[invisible] (35) [below=15pt of 26] {};
\draw (10) -- (11) -- (12) -- (13);
\draw (20) -- (21) -- (22) -- (23) -- (24) -- (25) -- (26);
\draw (30) -- (31) -- (32) -- (33) -- (34) -- (35);
\end{tikzpicture}
}

View File

@ -0,0 +1,23 @@
\resizebox{\columnwidth}{!}{%
\begin{tikzpicture}[
roundedrectangle/.style={draw, rounded corners, rectangle, minimum height=10pt, minimum width=20pt},
invisible/.style={draw=none, fill=none},
]
\node[invisible] (10) {};
\node[roundedrectangle] (11) [right=60pt of 10] {\textcolor{blue}{$r_x(0,0)$}};
\node[roundedrectangle, minimum width=100pt] (12) [right=50pt of 11] {$w_x(1)$};
\node[invisible] (13) [right=100pt of 12] {};
\node[invisible] (20) [below=15pt of 10] {};
\node[roundedrectangle] (21) [right=20pt of 20] {\textcolor{blue}{$r_x/(0,0)$}};
\node[roundedrectangle] (22) [right=50pt of 21] {\textcolor{red!70}{$r_x/(0,1)$}};
\node[roundedrectangle] (23) [right=15pt of 22] {\textcolor{blue!70}{$r_x/(0,0)$}};
\node[roundedrectangle] (24) [right=10pt of 23] {\textcolor{blue!70}{$r_x/(0,0)$}};
\node[roundedrectangle] (25) [right=20pt of 24] {\textcolor{red}{$r_x/(0,1)$}};
\node[invisible] (26) [below=15pt of 13] {};
\draw (10) -- (11) -- (12) -- (13);
\draw (20) -- (21) -- (22) -- (23) -- (24) -- (25) -- (26);
\end{tikzpicture}
}

View File

@ -0,0 +1,22 @@
\resizebox{\columnwidth}{!}{%
\begin{tikzpicture}[
roundedrectangle/.style={draw, rounded corners, rectangle, minimum height=10pt, minimum width=20pt},
invisible/.style={draw=none, fill=none},
]
\node[invisible] (10) {};
\node[roundedrectangle] (11) [right=60pt of 10] {\textcolor{blue}{$r_x(0,0)$}};
\node[roundedrectangle, minimum width=100pt] (12) [right=50pt of 11] {$w_x(1)$};
\node[invisible] (13) [right=65pt of 12] {};
\node[invisible] (20) [below=15pt of 10] {};
\node[roundedrectangle] (21) [right=20pt of 20] {\textcolor{blue}{$r_x/(0,0)$}};
\node[roundedrectangle] (22) [right=25pt of 21] {\textcolor{blue}{$r_x/(0,0)$}};
\node[roundedrectangle] (23) [right=30pt of 22] {\textcolor{black!70}{$r_x/(?)$}};
\node[roundedrectangle] (24) [right=55pt of 23] {\textcolor{red}{$r_x/(0,1)$}};
\node[invisible] (25) [below=15pt of 13] {};
\draw (10) -- (11) -- (12) -- (13);
\draw (20) -- (21) -- (22) -- (23) -- (24) -- (25);
\end{tikzpicture}
}

View File

@ -0,0 +1,34 @@
\resizebox{\columnwidth}{!}{%
\begin{tikzpicture}[
roundnode/.style={circle, draw=black, fill=black, very thick, minimum size=1pt,},
ignorednode/.style={circle, draw=black!20, fill=black!20, very thick, minimum size=1pt,},
arrow/.style={|->, thick,},
message/.style={->, blue!50, dashed, -{Circle[length=4pt,]}},
]
\node[roundnode, draw=red, fill=red] (11) {};
\node[left] at (11.west) {$p_0$};
\node[above] at (11.north) {$w(1)$};
\node[roundnode, draw=blue, fill=blue] (12) [right=of 11] {};
\node[above] at (12.north) {$r/(0,0)$};
\node[roundnode, draw=blue, fill=blue] (13) [right=of 12] {};
\node[above] at (13.north) {$r/(0,2)^w$};
\draw[arrow] (11) -- (12);
\draw[arrow] (12) -- (13);
\node[roundnode, draw=blue, fill=blue] (21) [below=of 11] {};
\node[left] at (21.west) {$p_1$};
\node[below] at (21.south) {$w(2)$};
\node[roundnode, draw=red, fill=red] (22) [right=of 21] {};
\node[below] at (22.south) {$r/(0,0)$};
\node[roundnode, draw=red, fill=red] (23) [right=of 22] {};
\node[below] at (23.south) {$r/(0,1)^w$};
\draw[arrow] (21) -- (22);
\draw[arrow] (22) -- (23);
\draw[message] (11) -- ($(22)!0.5!(23)$);
\draw[message] (21) -- ($(12)!0.5!(13)$);
\end{tikzpicture}
}

View File

@ -0,0 +1,34 @@
\resizebox{\columnwidth}{!}{%
\begin{tikzpicture}[
roundnode/.style={circle, draw=black, fill=black, very thick, minimum size=1pt,},
ignorednode/.style={circle, draw=black!20, fill=black!20, very thick, minimum size=1pt,},
arrow/.style={|->, thick,},
message/.style={->, blue!50, dashed, -{Circle[length=4pt,]}},
]
\node[roundnode, draw=red, fill=red] (11) {};
\node[left] at (11.west) {$p_0$};
\node[above] at (11.north) {$w(1)$};
\node[roundnode, draw=blue, fill=blue] (12) [right=of 11] {};
\node[above] at (12.north) {$r/(0,0)$};
\node[roundnode, draw=blue, fill=blue] (13) [right=of 12] {};
\node[above] at (13.north) {$r/(0,2)^w$};
\draw[arrow] (11) -- (12);
\draw[arrow] (12) -- (13);
\node[roundnode, draw=blue, fill=blue] (21) [below=of 11] {};
\node[left] at (21.west) {$p_1$};
\node[below] at (21.south) {$w(2)$};
\node[roundnode, draw=red, fill=red] (22) [right=of 21] {};
\node[below] at (22.south) {$r/(0,0)$};
\node[roundnode, draw=red, fill=red] (23) [right=of 22] {};
\node[below] at (23.south) {$r/(0,1)^w$};
\draw[arrow] (21) -- (22);
\draw[arrow] (22) -- (23);
\draw[message] (11) -- ($(22)!0.5!(23)$);
\draw[message] (21) -- ($(12)!0.5!(13)$);
\end{tikzpicture}
}