1 Introduction

1.1 Model
1.1.1 Model Properties

The system consists of n asynchronous processes communicating via reliable point-to-point message pas-
sing.
Each process has a unique, unforgeable identifier and knows the identifiers of all other processes.
Up to f < n processes may crash (fail-stop).
The network is reliable : if a correct process sends a message to another correct process, it is eventually
delivered.
Messages are uniquely identifiable : two messages sent by distinct processes or at different rounds are distin-
guishable
2 messages sent by the same processus in two differents rounds are differents

Property 1 (Message Uniqueness) If two messages are sent by different processes, or by the same pro-
cess in different rounds, then the messages are distinct.
Formally :

send(p1,71, m1) A send(pa, T2, m2)

A (p1#p2V 1 #12) )Z>m17ém2

vp17p27 v’l"l,’l"g, vm17m27 (

1.1.2 Reliable Broadcast Properties

Property 2 Integrity Every message received was previously sent.
Formally :
Vp; © be-recv;(m) = p; : be-send;(m)

Property 3 No Duplicates No message is received more than once at any single processor.
Formally :
Vm, Vp; = be-recv;(m) occurs at most once

Property 4 Validity All messages broadcast by a correct process are eventually received by all non faulty
PToCessors.

Formally :

Vm,Vp; : correct(p;) A be-send;(m) => Vp; : correct(p;) = be-recvj(m)

1.1.3 AtomicBroadcast Properties

Property 5 AB Totally ordered Vmy,ma,Vp;,pj : ab-recvy,(m1) < ab-recvy,,(m2) = ab-recv,;(my) <
ab-recuy, (m2)

1.1.4 DenyList Properties

Let II,; be the set of processes authorized to issue APPEND operations, and IIy the set of processes
authorized to issue PROVE operations.
Let S be the set of valid values that may be appended. Let Seq be the linearization of operations recorded
in the DenyList.

Property 6 APPEND Validity An operation APPEND(x) is valid iff : the issuing process p € I, and the
value x € S



Property 7 PROVE Validity An operation PROVE(x) is valid iff : the issuing process p € Iy, and there
exists no APPEND(x) that appears earlier in Seq.

Property 8 PROGRESS If an APPEND(z) is invoked by a correct process, then all correct processes will
eventually be unable to PROVE(x).

Property 9 READ Validity READ() return a list of tuples who is a random permutation of all valids
PROVE() associated to the identity of the emiter process.

1.2

Algorithms

We consider a set of processes communicating asynchronously over reliable point-to-point channels. Each
process maintains the following local or shared variables :

1.3

received : the set of messages that have been received via the reliable broadcast primitive but not
yet ordered.

delivered : the set of messages that have been ordered.

prop[r][j] : the proposal set announced by process j at round r. It contains a set of messages that
process j claims to have received but not yet delivered.

winner” : the set of processes that have issued a valid PROVE for round r, as observed through the
registry.

RB-cast(PROP, S,r,j) : a reliable broadcast invocation that disseminates the proposal S from process
j for round r.

RB-delivered(PROP, S, j) : the handler invoked upon reception of a RB-cast, which stores the
received proposal S into prop[r|[j].

READ() : returns the current view of all valid operations stored in the DenyList registry.

ordered(S) : returns a deterministic total order over a set S of messages.

proof

Theorem 1 (Integrity) If a message m is delivered by any process, then it was previously broadcast by
some process via the AB-broadcast primitive.

Proof 1 Let j be a process such that AB-deliver;(m) occurs.



Algorithm 1 Atomic Broadcast with DenyList

1

1
1
1

0O Ut W N =

=
o ©

= e s
ST W N~

=
© 00

20

21
2

[\)

proves < ()
received < ()
delivered < ()
r1 <0

AB-Broadcast;(m)
RB-Broadcast;(m)

RB-delivered;(m)
received < received U {m}
repeat until received \ delivered # ()
S < received \ delivered
proves < READ()

ro <— max{r: j, (j,PROVE(r)) € proves} + 1

RB-cast(PROP, S, 7, §)
PROVE(r3)

for refri+1,...,72] do
APPEND(r)
proves < READ()
winner” < {j : (j,PROVE(r)) € proves}
wait Vj € winner”, proplr|[j] # L
T < Ujcwinner proplr][i] \ delivered

for each m € ordered(T)
delivered < delivered U {m}
AB-deliver;(m)
7 < T

RB-delivered; (PROP, S, 71, j1)
proplri][j1] < S




AB-deliver;(m) (line 18)
= m € ordered(T), with T = U prop[r][j] \ delivered (lines 16-17)

7' Ewinner”

= Jjo, r0 : M € prop[ro][jo] (line 16)
= prop[ro][jo] = S, with RB-delivered;(PROP,S,ro, jo) (line 22)
= S was sent in RB-cast(PROP, S, rq, jo) (line 9)
= S = received;, \ delivered;, (line 6)
= m’ € received;, where m’ broadcast by jo (line 4)
= if m=m'
= RB-Broadcast;,(m) occurred (line 3)
= AB-Broadcastj,(m) occurred (line 1) O
else : m € received;, \ delivered;,
= m € received;, (line 4)
= RB-delivered;,(m) occurred (line 3)
= Jji1 : RB-Broadcast;, (m) occurred (line 2)
= AB-Broadcast;, (m) occurred (line 1) O

Therefore, every delivered message m must originate from some call to AB-Broadcast.
Theorem 2 (No Duplication) No message is delivered more than once by any process.
Proof 2 Assume by contradiction that a process j delivers the same message m more than once, i.e.,

AB-deliver;(m) occurs at least twice.

AB-deliver;(m) occurs (line 19)
= m € ordered(T), where T = U prop[r][j'] \ delivered (lines 16-17)
' €winner”

= m ¢ delivered at that time

However :
delivered < deliveredU {m} (line 18)
= m € delivered permanently
= In any future round, m ¢ T' since T' = U proplr’|[5'] \ delivered
' €winner”
= m will not be delivered again

= Contradiction.
Therefore, no message can be delivered more than once by the same process. [

Theorem 3 (Validity) If a correct process invokes AB-Broadcast;(m), then all correct processes eventually
deliver m.



Proof 3 Let j be a correct process such that AB-Broadcastj(m) occurs (line 5).

AB-Broadcast;(m) (line 1)
= RB-Broadcastj(m) occurs (line 2)
= Vjo : RB-delivered;,(m) (line 3)
= m € received;, (line 4)
= if m € delivered,,
= delivered;, < textitdelivered;, U {m} (line 18)
= AB-delivered; (m) (line 19) O
else m ¢ delivered;, :
= m € S;, since S, = receteved;, \ delivered;, (line 6)
= 3r : RB-cast,,(textttPROP, S;,, 1, jo) (line 9)
= Vj1 : RB-Deliver; (PROP,S;,, T, jo) occurs (line 21)
= prop[r][jo] = Sj, (line 22)
= Jja € jo : PROVE;,(r) is valid (line 10)
= jo € textitwinner” (line 14)
= Tj, 3 prop[r][ja] \ delivered;, (line 16)
= Tj, 2 5}, \ delivered;, > m (line 16)
= AB-deliver; (m) (line 19) O

Theorem 4 (Total Order) If two correct processes deliver two messages my and ms, then they deliver
them in the same order.

Proof 4
Vjo : AB-Deliverj,(mg) A AB-Deliver;j,(my) (line 19)
= Jrg,r1 : Mg € ordered(T™) Amy € ordered(T™) (line 17)
=T = U prop[rol[j] \ delivered A
j’ €winnermo
T = U prop[r1][j’'] \ delivered (line 16)
j'Ewinner”l
= ’l,f o =171
=T =1T"

= mg,m1 € ordered(T") since ordered is deterministic
= if mog < my:
= AB-Deliver; (mg) < 4B-Deliver;,(m1) O
else if rop <11
=Vm e T™,Vm' € T™ : AB-Deliver(m) < AB-Deliver(m’) O

Therefore, for all correct processes, messages are delivered in the same total order.



