
1 Introduction

1.1 Model
1.1.1 Model Properties

The system consists of n asynchronous processes communicating via reliable point-to-point message pas-
sing.
Each process has a unique, unforgeable identifier and knows the identifiers of all other processes.
Up to f < n processes may crash (fail-stop).
The network is reliable : if a correct process sends a message to another correct process, it is eventually
delivered.
Messages are uniquely identifiable : two messages sent by distinct processes or at different rounds are distin-
guishable
2 messages sent by the same processus in two differents rounds are differents

Property 1 (Message Uniqueness) If two messages are sent by different processes, or by the same pro-
cess in different rounds, then the messages are distinct.
Formally :

∀p1, p2, ∀r1, r2, ∀m1,m2,

(
send(p1, r1,m1) ∧ send(p2, r2,m2)
∧ (p1 ̸= p2 ∨ r1 ̸= r2)

)
⇒ m1 ̸= m2

1.1.2 Reliable Broadcast Properties

Property 2 Integrity Every message received was previously sent.
Formally :
∀pi : bc-recvi(m)⇒ ∃pj : bc-sendj(m)

Property 3 No Duplicates No message is received more than once at any single processor.
Formally :
∀m, ∀pi : bc-recvi(m) occurs at most once

Property 4 Validity All messages broadcast by a correct process are eventually received by all non faulty
processors.
Formally :
∀m, ∀pi : correct(pi) ∧ bc-sendi(m) => ∀pj : correct(pj)⇒ bc-recvj(m)

1.1.3 AtomicBroadcast Properties

Property 5 AB Totally ordered ∀m1,m2, ∀pi, pj : ab-recvpi
(m1) < ab-recvpi

(m2) ⇒ ab-recvpj
(m1) <

ab-recvpj (m2)

1.1.4 DenyList Properties

Let ΠM be the set of processes authorized to issue APPEND operations, and ΠV the set of processes
authorized to issue PROVE operations.
Let S be the set of valid values that may be appended. Let Seq be the linearization of operations recorded
in the DenyList.

Property 6 APPEND Validity An operation APPEND(x) is valid iff : the issuing process p ∈ ΠM , and the
value x ∈ S

1



Property 7 PROVE Validity An operation PROVE(x) is valid iff : the issuing process p ∈ ΠV , and there
exists no APPEND(x) that appears earlier in Seq.

Property 8 PROGRESS If an APPEND(x) is invoked by a correct process, then all correct processes will
eventually be unable to PROVE(x).

Property 9 READ Validity READ() return a list of tuples who is a random permutation of all valids
PROVE() associated to the identity of the emiter process.

1.2 Algorithms
We consider a set of processes communicating asynchronously over reliable point-to-point channels. Each

process maintains the following local or shared variables :
— received : the set of messages that have been received via the reliable broadcast primitive but not

yet ordered.
— delivered : the set of messages that have been ordered.
— prop[r][j] : the proposal set announced by process j at round r. It contains a set of messages that

process j claims to have received but not yet delivered.
— winnerr : the set of processes that have issued a valid PROVE for round r, as observed through the

registry.
— RB-cast(PROP, S, r, j) : a reliable broadcast invocation that disseminates the proposal S from process

j for round r.
— RB-delivered(PROP, S, r, j) : the handler invoked upon reception of a RB-cast, which stores the

received proposal S into prop[r][j].
— READ() : returns the current view of all valid operations stored in the DenyList registry.
— ordered(S) : returns a deterministic total order over a set S of messages.

1.3 proof
Theorem 1 (Integrity) If a message m is delivered by any process, then it was previously broadcast by
some process via the AB-broadcast primitive.

Proof 1 Let j be a process such that AB-deliverj(m) occurs.

2



Algorithm 1 Atomic Broadcast with DenyList
1 proves← ∅
1 received← ∅
1 delivered← ∅
1 r1 ← 0

1 AB-Broadcastj(m)
2 RB-Broadcastj(m)

3 RB-deliveredj(m)
4 received← received ∪ {m}
5 repeat until received \ delivered ̸= ∅
6 S ← received \ delivered
7 proves← READ()
8 r2 ← max{r : j, (j, PROVE(r)) ∈ proves}+ 1
9 RB-cast(PROP, S, r2, j)

10 PROVE(r2)

11 for r ∈ [r1 + 1, . . . , r2] do
12 APPEND(r)
13 proves← READ()
14 winnerr ← {j : (j, PROVE(r)) ∈ proves}
15 wait ∀j ∈ winnerr, prop[r][j] ̸= ⊥
16 T ←

⋃
j∈winnerr prop[r][j] \ delivered

17 for each m ∈ ordered(T )
18 delivered← delivered ∪ {m}
19 AB-deliverj(m)
20 r1 ← r2

21 RB-deliveredj(PROP, S, r1, j1)
22 prop[r1][j1]← S

3



AB-deliverj(m) (line 18)

⇒ m ∈ ordered(T ), with T =
⋃

j′∈winnerr
prop[r][j′] \ delivered (lines 16-17)

⇒ ∃j0, r0 : m ∈ prop[r0][j0] (line 16)
⇒ prop[r0][j0] = S, with RB-deliveredj(PROP, S, r0, j0) (line 22)
⇒ S was sent in RB-cast(PROP, S, r0, j0) (line 9)
⇒ S = receivedj0 \ deliveredj0 (line 6)
⇒ m′ ∈ receivedj0 where m′ broadcast by j0 (line 4)
⇒ if m = m′

⇒ RB-Broadcastj0(m) occurred (line 3)
⇒ AB-Broadcastj0(m) occurred (line 1) □

else : m ∈ receivedj0 \ deliveredj0
⇒ m ∈ receivedj0 (line 4)
⇒ RB-deliveredj0(m) occurred (line 3)
⇒ ∃j1 : RB-Broadcastj1(m) occurred (line 2)
⇒ AB-Broadcastj1(m) occurred (line 1) □

Therefore, every delivered message m must originate from some call to AB-Broadcast.

Theorem 2 (No Duplication) No message is delivered more than once by any process.

Proof 2 Assume by contradiction that a process j delivers the same message m more than once, i.e.,

AB-deliverj(m) occurs at least twice.

AB-deliverj(m) occurs (line 19)

⇒ m ∈ ordered(T ), where T =
⋃

j′∈winnerr
prop[r][j′] \ delivered (lines 16-17)

⇒ m /∈ delivered at that time

However :
delivered← delivered ∪ {m} (line 18)

⇒ m ∈ delivered permanently

⇒ In any future round, m /∈ T ′ since T ′ =
⋃

j′∈winnerr
prop[r′][j′] \ delivered

⇒ m will not be delivered again
⇒ Contradiction.

Therefore, no message can be delivered more than once by the same process. □

Theorem 3 (Validity) If a correct process invokes AB-Broadcastj(m), then all correct processes eventually
deliver m.

4



Proof 3 Let j be a correct process such that AB-Broadcastj(m) occurs (line 5).

AB-Broadcastj(m) (line 1)
⇒ RB-Broadcastj(m) occurs (line 2)
⇒ ∀j0 : RB-deliveredj0(m) (line 3)
⇒ m ∈ receivedj0 (line 4)
⇒ if m ∈ deliveredj0

⇒ deliveredj0 ← textitdeliveredj0 ∪ {m} (line 18)
⇒ AB-deliveredj0(m) (line 19) □

else m /∈ deliveredj0 :

⇒ m ∈ Sj0 since Sj0 = receievedj0 \ deliveredj0 (line 6)
⇒ ∃r : RB-castj0(textttPROP, Sj0 , r, j0) (line 9)
⇒ ∀j1 : RB-Deliverj1(PROP, Sj0 , r, j0) occurs (line 21)
⇒ prop[r][j0] = Sj0 (line 22)

⇒ ∃j2 ∈ j0 : PROVEj2(r) is valid (line 10)
⇒ j2 ∈ textitwinnerr (line 14)
⇒ Tj0 ∋ prop[r][j2] \ deliveredj0 (line 16)
⇒ Tj0 ∋ Sj2 \ deliveredj0 ∋ m (line 16)
⇒ AB-deliverj0(m) (line 19) □

Theorem 4 (Total Order) If two correct processes deliver two messages m1 and m2, then they deliver
them in the same order.

Proof 4

∀j0 : AB-Deliverj0(m0) ∧ AB-Deliverj0(m1) (line 19)
⇒ ∃r0, r1 : m0 ∈ ordered(T r0) ∧m1 ∈ ordered(T r1) (line 17)

⇒ T r0 =
⋃

j′∈winnerr0

prop[r0][j′] \ delivered ∧

T r1 =
⋃

j′∈winnerr1

prop[r1][j′] \ delivered (line 16)

⇒ if r0 = r1

⇒ T r0 = T r1

⇒ m0,m1 ∈ ordered(T r0) since ordered is deterministic
⇒ if m0 < m1 :

⇒ AB-Deliverj0(m0) < AB-Deliverj0(m1) □

else if r0 < r1

⇒ ∀m ∈ T r0 , ∀m′ ∈ T r1 : AB-Deliver(m) < AB-Deliver(m′) □

Therefore, for all correct processes, messages are delivered in the same total order.

5


