777

JOLY Amaury
Encadrants : GODARD Emmanuel, TRAVERS Corentin

Aix-Marseille Université, Scille

2 mai 2025



1 Introduction

1.1 Model
1.1.1 Model Properties

The model is defined as Message-passing Aysnchronous.

There is n process. Each process is associated to a unique unforgeable id 7.

Each process know the identity of all the process in the system

Each process have a reliable communication channel with all the others process such as :
— send(m) is the send primitive
— recv(m) is the reception primitive

A message send is eventualy received

The system is Crash-Prone. There is at most f process who can crash such as f < n.

1.1.2 AtomicBroadcast Properties
Property 1 AB_broadcast Validity if a message is sent by a correct process, the message is eventually

received by all the correct process.

Property 2 AB_receive Validity if a message is received by a correct process, the message is eventually
received by all the correct process.

Property 3 AB_receive safety No creation if a message is received by a correct process, the message was
emitted by a correct porcess.

Property 4 AB_receive safety No duplication each message is received at most 1 time by each process.

Property 5 AB_ receive safety Ordering Vimi, mo two messages, ¥p;,p; two process.
if AB_recv(ml1) and AB_recv(m2) for p;,pj

and AB_recv(ml) is before AB_recv(m2) for p;

so AB_recv(ml) is before AB_recv(m?2) for p;

1.1.3 DenyList Properties
Property 6 APPEND Validity a APPEND(z) is valid iff the process p who sent the operation is such as
p €lly. And iff x € S where S is a set of valid values.

Property 7 PROVE Validity a PROVE(z) is valid iff the process p who sent the operation is such as
p € y. And iff 3 APPEND(x) who appears before PROVE(x) in Seq.

Property 8 PROGRESS if an APPEND(z) is invoked, so there is a point in the linearization of the ope-
rations such as all PROVE(z) are valids.

Property 9 READ Validity READ() return a list of tuples who is a random permutation of all valids
PROVE() associated to the identity of the emiter process.

1.2 Algorithms

We define k as the id of the round
the get M ax(proves) return MAX((_,r):3(_, PROVE(r)) € proves)
buf fer a FIFO list with buf fer[front] returning the first element



Algorithm 1: Upon RB_ deliver(m)

1 reved = reved | J{m}
2 upon RB_ deliver(PROP, r, S) from j
3 prop[r|[j] = S

Algorithm 2: AB_Broadcast

Input: le message m
Data: rcved =
delivered = 0

r=20

1 RB_cast(m)

2 rcved = revd | J{m}

3 while true do

4 r=r-+1

5 RB_cast(PROP,r,S)

6 PROVE(r)

7 | APPEND(r)

8 proves = READ()

9 winner” = {j : (j, PROV E(r)) € proves}
10 wait until (Vj € winner® : prop[r][j])
11 if 3j € winner® : m € prop[r][j] then
12 ‘ break
13 end
14 end

Algorithm 3: AB_Listen

1r_prev =20
2 while true do

3 proves = READ()
4 r_maxr = MAX({r: 3, (i, PROVE(r)) € proves})
5 for r =r_ prev+ 1tor _maz do
6 APPEND(r)
7 proves = READ()
8 winner® = {j : (j, PROV E(r)) € proves}
9 wait until(Vj € winner® : prop[r][j] # 0)
10 M" = (Ujewinnerk pTOp[T] [JD \ delivered
/* we assume M" as an ordered list s.a. Vmi,mas,ifm; < mg, mj appears
before mo in M" */
11 foreach m € M" do
12 delivered = delivered | J{m}
13 AB_ deliver(m)
14 end
15 end
16 end




