777

JOLY Amaury
Encadrants : GODARD Emmanuel, TRAVERS Corentin

Aix-Marseille Université, Scille

15 mai 2025

1 Introduction

1.1 Model
1.1.1 Model Properties

The system consists of n asynchronous processes communicating via reliable point-to-point message pas-
sing.
Each process has a unique, unforgeable identifier and knows the identifiers of all other processes.
Up to f < n processes may crash (fail-stop).
The network is reliable : if a correct process sends a message to another correct process, it is eventually
delivered.
Messages are uniquely identifiable : two messages sent by distinct processes or at different rounds are distin-
guishable
2 messages sent by the same processus in two differents rounds are differents

Property 1 (Message Uniqueness) If two messages are sent by different processes, or by the same pro-
cess in different rounds, then the messages are distinct.
Formally :

send(p1,71, m1) A send(pa, T2, m2)

A (p1#p2V 1 #12))Z>m17ém2

vp17p27 v’l"l,’l"g, vm17m27 (

1.1.2 Reliable Broadcast Properties

Property 2 Integrity Every message received was previously sent.
Formally :
Vp; © be-recv;(m) = p; : be-send;(m)

Property 3 No Duplicates No message is received more than once at any single processor.
Formally :
Vm, Vp; = be-recv;(m) occurs at most once

Property 4 Validity All messages broadcast by a correct process are eventually received by all non faulty
PToCessors.

Formally :

Vm,Vp; : correct(p;) A be-send;(m) => Vp; : correct(p;) = be-recvj(m)

1.1.3 AtomicBroadcast Properties

Property 5 AB Totally ordered Vmy,ma,Vp;,pj : ab-recvy,(m1) < ab-recvy,,(m2) = ab-recv,;(my) <
ab-recuy, (m2)

1.1.4 DenyList Properties

Let II,; be the set of processes authorized to issue APPEND operations, and IIy the set of processes
authorized to issue PROVE operations.
Let S be the set of valid values that may be appended. Let Seq be the linearization of operations recorded
in the DenyList.

Property 6 APPEND Validity An operation APPEND(x) is valid iff : the issuing process p € I, and the
value x € S

Property 7 PROVE Validity An operation PROVE(x) is valid iff : the issuing process p € Iy, and there
exists no APPEND(x) that appears earlier in Seq.

Property 8 PROGRESS If an APPEND(z) is invoked by a correct process, then all correct processes will
eventually be unable to PROVE(x).

Property 9 READ Validity READ() return a list of tuples who is a random permutation of all valids
PROVE() associated to the identity of the emiter process.

1.2

Algorithms

We consider a set of processes communicating asynchronously over reliable point-to-point channels. Each
process maintains the following shared variables :

1.3

received : the set of messages received (but not yet delivered).

delivered : the set of messages that have been received, ordered, and delivered.

prop|r][j] : the proposal set of process j at round r. It contains the set of messages that process
j claims to have received but not yet delivered at round r, concatenated with its newly broadcast
message.

proves : the current content of the DenyList registry, accessible via the operation READ(). It returns
a list of tuples (j, PROVE(r)), each indicating that process j has issued a valid PROVE for round r.
winner” : the set of processes that have issued a valid PROVE operation for round r.

RB-cast : a reliable broadcast primitive that satisfies the properties defined in Section 1.1.2.
APPEND(r), PROVE(r) : operations that respectively insert (APPEND) and attest (PROVE) the
participation of a process in round r in the DenyList registry.

READ() : retrieves the current local view of valid operations (APPENDs and PROVEs) from the
DenylList.

ordered(S) : returns a deterministic total order over a set .S of messages (e.g., via hash or lexicographic
order).

proof

Theorem 1 (Integrity) If a message m is delivered by any process, then it was previously broadcast by
some process via the AB-broadcast primitive.

Proof 1 Let j be a process such that AB-deliver;(m) occurs.

AB-deliver;j(m) (line 24)
= Jro: m € ordered(M™) (line 22)
= Tjo : jo € winner™ Am € proplro|[jo] (line 21)
= Imyg, So : RB-recewed;, (mg, So,T0,0) Am € Sy (line 2)
= So = (received;, \ delivered;,) U {m1} (line 5)

= tf m1 =m : 3 AB-broadcast;,(m) O
else if my #m:
m € received;, \ delivered;, = m € received;, A'm ¢ delivered;,
3j1, 81,71+ RB-received;, (m, S1,71, j1) (line 1)
= 3 AB-broadcast;, (m) O (line 5)

Theorem 2 (No Duplication) No message is delivered more than once by any process.

RB-received(m, S, g, jo)
1 received < received U {m}
2 proplrolljo] < S

AB-broadcast(m, jo)

3 proves + READ()

4 ro + max{r: 34, (j,PROVE(r)) € proves} + 1
5 RB-cast(m, (received \ delivered) U {m},ro, jo)
6 PROVE(r)

7 APPEND(rg)

8 repeat

8 proves < READ()

9 r1 < max{r : 37, (j,PROVE(r)) € proves} — 1
10 winner’™ < {j : (j,PROVE(ry)) € proves}

11 wait Vj € winner™, prop[ri][j] # L

12 until 3ry, Jjo € winner™, m € prop[ra][j2]

AB-listen

14 while true do

14 proves < READ()

15 r1 < max{r : 35, (j, PROVE(r)) € proves} — 1

16 for ry € [ro,...,r1] do

17 APPEND(r5)

18 proves <— READ()

19 winner™ < {j : (i, PROVE(r2)) € proves}
20 wait Vj € winner", prop[ra][j] # L

21 M"™ Ujemnnerrz prop[ra][j]

22 for all m € ordered(M") do

23 delivered < delivered U {m}

24 AB-deliver(m)

Proof 2 Let j be a process such that both AB-deliver;(mg) and AB-deliver;(my) occur, with mo = m;.

AB-deliver;(mg) A AB-deliver;(m1) (line 24)

= Mg, m1 € delivered; (line 23)

= drg,r1:mg € M™ Amq € M™ (line 22)
= Jjo, j1 : Mo € prop[ro][jo] A ma € proplri][ji]

A jo € winner®, j; € winner? (line 21)

We now distinguish two cases :

Case 1 :rqg=11 :
— If jo # j1 : this contradicts message uniqueness, since two different processes would include the same
message in round rq.

— Ifjo=171 -
=|(jo, PROVE(r)) € proves| > 2 (line 19)
= PROVE,,(ro) occurs 2 times (line 6)
= AB-Broadcastj,(mg) were invoked two times
=(max{r : 37, (j, PROVE(r)) € proves} + 1) (line 4)

returned the same value in two differents invokations of AB-Broadcast
But PROVE(ro) = maz{r : 3, (j, PROVE(r)) € proves} +1 > rg

It’s impossible for a single process to submit two messages in the same round

Case 2 :rqg#ry :
— If jo # j1 : again, message uniqueness prohibits two different processes from broadcasting the same
message in different rounds.
— If jo = j1 : message uniqueness also prohibits the same process from broadcasting the same message
in two different rounds.
In all cases, we reach a contradiction. Therefore, it is impossible for a process to deliver the same message
more than once. O

1.3.1 Broadcast Validity

Jjo,mo AB_broadcastj,(mg) = Vj1 AB_received;, (my)

Proof :

jo,mo AB_broadcast;,(mo)

Vj1,3r1 RB_deliver} (my)

Jdreceieved : mg € receieved;,

Jdrg : RB__deliver(PROP, o, mg) Loor
Jprop : proplro[jo] = mo

if A(jo, PROV E(rg)) € proves

7’0+ =1
jump to LOOP
else

Jwinner, winner™ > jg
M 3 (prop[ro]ljo] = mo)
Vj1, AB_deliverj, (mo)

AB receive width

Fjo,mo AB_deliver;j,(mg) = Vji AB_deliver;,
Proof :

Vjo, mo AB_deliver;,(mg) = 3j1 correct , AB_broadcast(myg)
Jjo,mo AB_broadcast;,(mo) = Vj1, AB_deliver;, (mg)

